CdSe Quantum Dot based Transparent Light-emitting Device using Silver Nanowire/Ga-doped ZnO Composite Electrode

AgNWs/Ga-doped ZnO 복합전극 적용 CdSe양자점 기반 투명발광소자

  • Park, Jehong (Display Technology Research Center, Pukyong National University) ;
  • Kim, Hyojun (Department of Display Science and Engineering, Pukyong National University) ;
  • Kang, Hyeonwoo (Department of Display Science and Engineering, Pukyong National University) ;
  • Kim, Jongsu (Display Technology Research Center, Pukyong National University) ;
  • Jeong, Yongseok (Department of Display Science and Engineering, Pukyong National University)
  • 박재홍 (부경대학교 디스플레이기술연구소) ;
  • 김효준 (부경대학교 융합디스플레이공학과) ;
  • 강현우 (부경대학교 융합디스플레이공학과) ;
  • 김종수 (부경대학교 디스플레이기술연구소) ;
  • 정용석 (부경대학교 융합디스플레이공학과)
  • Received : 2020.10.23
  • Accepted : 2020.12.08
  • Published : 2020.12.31

Abstract

The silver nanowires (AgNWs) were synthesized by the conventional polyol process, which revealed 25 ㎛ and 30 nm of average length and diameter, respectively. The synthesized AgNWs were applied to the CdSe/CdZnS quantum dot (QD) based transparent light-emitting device (LED). The device using a randomly networked AgNWs electrode had some problems such as the high threshold voltage (for operating the device) due to the random pores from the networked AgNWs. As a method of improvement, a composite electrode was formed by overlaying the ZnO:Ga on the AgNWs network. The device used the composite electrode revealed a low threshold voltage (4.4 Vth) and high current density compared to the AgNWs only electrode device. The brightness and current density of the device using composite electrode were 55.57 cd/㎡ and 41.54 mA/㎠ at the operating voltage of 12.8 V, respectively, while the brightness and current density of the device using (single) AgNWs only were 1.71 cd/㎡ and 2.05 mA/㎠ at the same operating voltage. The transmittance of the device revealed 65 % in a range of visible light. Besides the reliability of the devices was confirmed that the device using the composite electrode revealed 2 times longer lifetime than that of the AgNWs only electrode device.

Keywords

References

  1. Sun, Y., Yin, Y., Mayers, B. T., Herricks, T., and Xia, Y., "Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone)", Chem. Mater., Vol. 14, pp. 4736-4745, 2002. https://doi.org/10.1021/cm020587b
  2. Lee, J. Y., Connor, S. T., Cui, Y., and Peumans, P., "Solution-Processed Metal Nanowire Mesh Transparent Electrodes", Nano Letters, Vol. 8, pp. 689-692, 2008. https://doi.org/10.1021/nl073296g
  3. Hu, L., Kim, H. S., Lee, J. Y., Peumans, P., and Cui, Y., "Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes", ACS nano, Vol. 4, pp. 2955-2963, 2010. https://doi.org/10.1021/nn1005232
  4. Leem, D. S., Edwards, A., Faist, M., Nelson, J., Bradley, D. D. C., and de Mello, J. C., "Efficient Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes", Adv. Mater., Vol. 23, pp. 4371-4375, 2011. https://doi.org/10.1002/adma.201100871
  5. Seo, T. H., Kim, B. K., Shin, G. U., Lee, C., Kim, M. J., Kim, H., and Suh, E. K., "Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes", Appl. Phys. Lett., Vol. 103, pp. (051105)1-5, 2013.
  6. Ding, K., Fang, Y., Dong, S., Chen, H., Luo, B., Jiang, K., Gu, H., Fan, L., Liu, S., Hu, B., and Wang, L., "24.1% External Quantum Efficiency of Flexible Quantum Dot Light-Emitting Diodes by Light Extraction of Silver Nanowire Transparent Electrodes", Adv., Opt. Mater., Vol. 6, pp. (1800347)1-8, 2018.
  7. Sun, Y., Chang, M., Meng, L., Wan, X., Gao, H., Zhang, Y., Zhao, K., Sun, Z., Li, C., Liu, S., Wang, H., Liang, J., and Chen, Y., "Flexible organic photovoltaics based on water-processed silver nanowire electrodes", Nat. Electron., Vol. 2, pp. 513-520, 2019. https://doi.org/10.1038/s41928-019-0315-1
  8. Tang, H., Feng, H., Wang, H., Wan, X., Liang, J., and Chen, Y., "Highly Conducting MXene-Silver Nanowire Transparent Electrodes for Flexible Organic Solar Cells", ACS Appl. Mater. Interfaces, Vol. 11, pp. 25330-25337, 2019. https://doi.org/10.1021/acsami.9b04113
  9. Park, J. S., Park, T. G., and Park, J. S., "Characterization of Nickel-coated Silver Nanowire Flexible Transparent Electrodes with a Random-mesh Structure Formed by Bubble Control", Journal of the Semiconductor & Display Technology, Vol. 19, pp. 36-42, 2020.
  10. Caruge, J. E., Halpert, J. E., Wood, V., Bulovic, V., and Bawendi, M. G., "Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers", Nature, Vol. 2, pp. 247-250, 2008.
  11. Shirasaki, Y., Supran, G. J., Bawendi, M. G., and Bulovic, V., "Emergence of colloidal quantum-dot light-emitting technologies", Nat. Photonics, Vol. 7, pp. 13-23, 2013. https://doi.org/10.1038/nphoton.2012.328
  12. Mashford, B. S., Stevenson, M., Popovic, Z., Hamilton, C., Zhou, Z., Breen, C., Steckel, J., Bulovic, V., Bawendi, M., Coe-Sullivan, S., and Kazlas, P. T., "High-efficiency quantum-dot light-emitting devices with enhanced charge injection", Nat. Photonics, Vol. 7, pp. 407-412, 2013. https://doi.org/10.1038/nphoton.2013.70
  13. Kirkwood, N., Singh, B., and Mulvaney, P., "Enhancing Quantum Dot LED Efficiency by Tuning Electron Mobility in the ZnO Electron Transport Layer", Adv. Mater. Interfaces, Vol. 3, pp. (1600868)1-7, 2016.
  14. Won, Y. H., Kim, T., Chung, D. Y., Kim, T., Chung, H., Jang, H., Lee, J., Kim, D., and Jang, E., "Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes", Nature, Vol. 575, pp. 634-638, 2019. https://doi.org/10.1038/s41586-019-1771-5
  15. Moon, H., Lee, C., Lee, W., Kim, J., and Chae, H., "Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications", Adv. Mater., Vol. 31, pp. (1804294)1-14, 2019.
  16. Shen, H., Gao, Q., Zhang, Y., Lin, Y., Lin, Q., Li, Z., Chen, L., Zeng, Z., Li, X., Jia, Y., Wang, S., Du, Z., Li, L. S., and Zhang, Z., "Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency", Nat. Photonics, Vol. 13, pp. 192-197, 2019. https://doi.org/10.1038/s41566-019-0364-z
  17. Lee, J., and Kang, J., "Stability of a QD-blended Organic Photodiode for X-ray Imaging", Journal of the Semiconductor & Display Technology, Vol. 16, pp. 15-18, 2017.