• 제목/요약/키워드: random microstructure

검색결과 58건 처리시간 0.023초

랜덤 미세구조에 따른 입자 복합재료의 특성분석 (Characteristic Analysis of Particulate Composites According to a Random Microstructure)

  • 박천;강영진;노유정;임오강
    • 한국전산구조공학회논문집
    • /
    • 제30권1호
    • /
    • pp.23-30
    • /
    • 2017
  • 입자 복합재료는 입자의 형상, 크기 그리고 분포의 산포특성으로 인해 물성치의 편차가 존재하고, 입자 복합재료를 사용한 시스템의 거동 또한 산포가 존재한다. 하지만 입자의 산포특성을 고려하기 어려우므로 균질화법을 사용하여 시스템의 거동을 해석하거나 국부영역에서 미세구조를 적용하여 해석한다. 본 연구에서는 입자의 랜덤적 산포특성을 고려하기 위해 RMDFs(random morphology description functions)를 사용하여 랜덤 미세구조를 생성하였고, 단면 1차 모멘트를 사용하여 가우시안 함수의 수(N)와 입자의 산포특성의 관계를 분석하였다. 그리고 랜덤 미세구조 구조물의 거동을 분석하기 위하여 랜덤 미세구조를 전체에 반영한 외팔보에 multi-scale 해석을 수행하였다. 그 결과 입자의 산포특성과 외팔보의 처짐의 편차는 N의 증가에 따라 감소하고 N=200에서 수렴하는 것을 확인하였다.

이종 입자복합재의 미세구조 생성과 계층적 모델의 선형 탄성적 응답특성 해석 (Microstructure Generation and Linearly Elastic Characteristic Analysis of Hierarchical Models for Dual-Phase Composite Materials)

  • 조진래
    • 한국전산구조공학회논문집
    • /
    • 제31권3호
    • /
    • pp.133-140
    • /
    • 2018
  • 본 논문은 $Ni-A{\ell}_2O_3$로 구성된 금속-세라믹 이종 입자복합재의 2차원 미세구조(microstructure) 생성과 미세구조 스케일(scale)에 따라 정의되는 계층적 모델들의 역학적 특성 분석에 관한 내용이다. 이종 입자복합재의 미세구조는 수학적인 MDF(random morphology description functions) 모델링기법을 복합재의 2차원 RVE(representative volume element) 영역에 적용하여 생성하였다. 그리고 미세구조 생성에 필요한 가우스 함수들의 개수에 따라 미세구조의 계층적 모델을 정의하였다. 한편 임의 미세구조 내 금속과 세라믹 입자가 차지하는 체적분율(volume fraction)은 RMDF 함수의 레벨을 조정함으로서 설정하였다. RMDF기법에 의한 미세구조들은 가우스 함수들의 개수가 일정할지라도 랜덤하게 생성된다. 이렇게 랜덤하게 생성되는 미세구조들을 2차원 보(beam) 모델에 적용하여 미세구조의 스케일에 따른 수직응력과 전단응력의 계층적 변동을 수치 해석적으로 고찰하였다. 또한, 균열해석을 통해 RMDF의 랜덤성과 가우스 함수들의 개수가 균열선단에서의 응력값에 미치는 영향을 고찰하였다.

Homogenized thermal properties of 3D composites with full uncertainty in the microstructure

  • Ma, Juan;Wriggers, Peter;Li, Liangjie
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.369-387
    • /
    • 2016
  • In this work, random homogenization analysis for the effective thermal properties of a three-dimensional composite material with unidirectional fibers is presented by combining the equivalent inclusion method with Random Factor Method (RFM). The randomness of the micro-structural morphology and constituent material properties as well as the correlation among these random parameters are completely accounted for, and stochastic effective thermal properties as thermal expansion coefficients as well as their correlation are then sought. Results from the RFM and the Monte-Carlo Method (MCM) are compared. The impact of randomness and correlation of the micro-structural parameters on the random homogenized results is revealed by two methods simultaneously, and some important conclusions are obtained.

비정형 혼합재 이동성질의 변동 (Fluctuation of Transport Properties of Random Heterogeneous Media)

  • 김인찬
    • 대한기계학회논문집B
    • /
    • 제20권9호
    • /
    • pp.3015-3029
    • /
    • 1996
  • The notion of effective transport property of a heterogeneous medium implies that the medium is large enough that the ergodic theorem holds and local fluctuation of the property can be neglected. In case that the medium is not large enough compared to its characteristic microstructure length scale, the effective property fluctuates and differs from the value of the medium being large enough. As a representative transport phenomenon, diffusion was considered and the fluctuation of varying effective diffusion property, diffusion coarseness $C_k$, was defined as a quantifying parameter. Scaled effective diffusion property, $^*$>/k$_1$ and $C_k$ were computed for the two phase random media consisting of matrix of diffusion coefficient k$_1$ and spheres of diffusion coefficient k$_2$. Numerical simulations were performed by use of the so-called first passage time technique and data were collected for existing microstructure models of hard spheres(HS), overlapping spheres(OS) and penetrable concentric shells(PCS).

Statistical Analysis of Microhardness Variations in Plasma Sprayed $Cr_3C_2-NiCr$ Coatings

  • Li, Jianfeng;Huang, jingqi;Ding, Chuanxian
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.171-178
    • /
    • 1998
  • The microstructure and properties of plasma-sprayed coatings depend on a great number of spraying parameters, random factors, which lead to vibration in these spraying parameters, may in some degree influence the microstructure and properties of the coatings. Therefore, the property values appear certain distributions, and the description and comparison of the properties of plasma-sprayed coatings should be performed employing statistical analysis. In this paper, $Cr_3C_2$-Nicr coatings of different thickness were sprayed onto stainless steel using atmosphere plasma system and adopting three kinds of gun translation speeds. Then the microhardness measurements were performed on polished surface of the coatings. Forty readings were taken and statistically analyzed by calculating the characteristic values, estimating and comparing the means, and assessing whether they belonged to the Normal or Weibull Distribution. This study has found that statistical analysis could discriminate influence of spraying parameters and coating design on microhardness of the $Cr_3C_2$-Nicr coatings from random vibration, which showed that the microharness of the $Cr_3C_2$-Nicr coatings were related to gun translation speed coating thickness.

  • PDF

3D reconstruction of two-phase random heterogeneous material from 2D sections: An approach via genetic algorithms

  • Pizzocri, D.;Genoni, R.;Antonello, F.;Barani, T.;Cappia, F.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2968-2976
    • /
    • 2021
  • This paper introduces a method to reconstruct the three-dimensional (3D) microstructure of two-phase materials, e.g., porous materials such as highly irradiated nuclear fuel, from two-dimensional (2D) sections via a multi-objective optimization genetic algorithm. The optimization is based on the comparison between the reference and reconstructed 2D sections on specific target properties, i.e., 2D pore number, and mean value and standard deviation of the pore-size distribution. This represents a multi-objective fitness function subject to weaker hypotheses compared to state-of-the-art methods based on n-points correlations, allowing for a broader range of application. The effectiveness of the proposed method is demonstrated on synthetic data and compared with state-of-the-art methods adopting a fitness based on 2D correlations. The method here developed can be used as a cost-effective tool to reconstruct the pore structure in highly irradiated materials using 2D experimental data.

Discernibly Temperature-insensitive Pressure Sensitivity in Porous Random-Hole Optical Fibers

  • Kim, Jeong;Kominsky, Dan;Pickrell, Gary
    • Journal of the Optical Society of Korea
    • /
    • 제17권4호
    • /
    • pp.300-304
    • /
    • 2013
  • Novel breakthrough random-hole optical fibers (RHOFs) are fabricated in a draw tower facility, by tapering an optical fiber preform packed with a silica powder mixture capable of producing air holes in situ at the high temperature of tens of hundreds in degrees Celsius. Structural and propagation characteristics of the porous RHOF are explained briefly. Experimental investigations of the invented RHOF are performed for pressure sensor applications. Remarkable results are obtained for the RHOF with desirable pressure sensitivity independent of temperature, as is required for harsh conditions as in oil reservoirs.

열간가공된 γ-TiAl 합금의 미세조직 제어 및 기계적 특성 평가 (Microstructure Control and Tensile Property Measurements of Hot-deformed γ-TiAl alloy)

  • 박성현;김재권;김성웅;김승언;박노진;오명훈
    • 열처리공학회지
    • /
    • 제32권6호
    • /
    • pp.256-262
    • /
    • 2019
  • The microstructural features and texture development by both hot rolling and hot forging in ${\gamma}-TiAl$ alloy were investigated. In addition, additional heat treatment after hot forging was conducted to recognize change of the microstructure and texture evolution. The obtained microstructural features through dynamic recrystallization after hot deformed ${\gamma}-TiAl$ were quite different because two kinds of formation process were occurred depending on deformation condition. However, analyzed texture tends to be random orientation due to intermediate annealing up to ${\alpha}+{\beta}$ region during the hot deformation process. After additional heat treatment, microstructure transformed into fully lamellar microstructure and randomly oriented texture was also observed due to the same reason as before. Tensile test at room temperature demonstrated that anisotropy of mechanical properties were not appeared and transgranular fracture was occurred between interface of ${\alpha}_2/{\gamma}$. As a result, it could be suggested that microstructural features influenced much more than texture development on mechanical properties at room temperature.

화학증착에 의한 TiN 박막의 제조 및 기계적 성질에 관한 연구 (Studies on Film Growth and Mechanical Properties of TiN by Chemical Vapor Deposition)

  • 김시범;김광호;천성순
    • 한국세라믹학회지
    • /
    • 제26권1호
    • /
    • pp.21-30
    • /
    • 1989
  • Titanium Nitride (TiN) was deposited onto the SKH9 tool steels by chemical vapor deposition (CVD) using a gaseous mixture of TiCl4, N2, and H2. The effects of the deposition temperature and input gas composition on the deposition rate, microstructure, preferred orientation, microhardness and wear resistance of TiN deposits were studied. The experimental results showed that the TiN deposition is thermally activated process with an apparent activation energy of about 27Kcal/mole in the temperature range between 1200$^{\circ}$K and 1400$^{\circ}$K. As H2/N2 gas input ratio increased, the deposition rate increased, showed maximum at H2/N2 gas input ratio of 1.5 and then decreased. Mechanical properties such as microhardness and wear resistance have close relation with the microstructure and preferred orientation of TiN deposits. It is suggested that the equiaxed structure with random orientation increases the microhardness and wear resistance of TiN deposits.

  • PDF

일본내 연구동향 (6편중 제4편) (State-of-the-art of the multi-scale analysis of advanced composite materials by homogenization method)

  • Takano, Naoki
    • Composites Research
    • /
    • 제15권5호
    • /
    • pp.44-52
    • /
    • 2002
  • To study numerically the mechanical behaviors of advanced composite materials considering the microscopic phenomena as well as the macroscopic properties and behaviors, a multi-scale modeling and analysis by the mathematical homogenization method with the help of the finite element method(FEM) are reviewed. The hierarchical modeling strategy and the formulation are briefly described first to give some idea of the multi-scale framework. The latter half of this article focuses on the verification of the multi-scale analysis by the homogenization method in its applications to real advanced materials. The first example is the verification of the predicted macroscopic(homogenized) properties based on the microstructure of porous ceramics. In spite of the complexity of the random microstructure, the error between the predicted and the measured values was only 1%. Next, two applications to the process simulation of fiber reinforced polymer matrix composites are presented. The permeability characteristics are evaluated for sheared weave fabrics for resin transfer molding(RTM) simulation, and the thermoforming of FRTP sheet is analyzed considering the large deformation of the knit structure during the deep-draw forming was verified by comparison with the experimental results.