DOI QR코드

DOI QR Code

Microstructure Generation and Linearly Elastic Characteristic Analysis of Hierarchical Models for Dual-Phase Composite Materials

이종 입자복합재의 미세구조 생성과 계층적 모델의 선형 탄성적 응답특성 해석

  • Cho, Jin-Rae (Department of Naval Architecture and Ocean Engineering, Hongik University)
  • 조진래 (홍익대학교 조선해양공학과)
  • Received : 2018.03.17
  • Accepted : 2018.05.11
  • Published : 2018.06.30

Abstract

This paper is concerned with the 2-D micostructure generation for $Ni-A{\ell}_2O_3$ dual-phase composite materials and the numerical analysis of mechanical characteristic of hierarchical models of microstructure which are defined in terms of the scale of microstructure. The microstructures of dual-phase composite materials were generated by applying the mathematical RMDF(random morphology description functions) technique to a 2-D RVE of composite materials. And, the hierarchical models of microstructure were defined by the number of Gaussian points. Meanwhile, the volume fractions of metal and ceramic particles were set by adjusting the level of RMD functions. The microstructures which were generated by RMDF technique are definitely random even though the total number of Gaussian points is the same. The randomly generated microstructures were applied to a 2-D beam model, and the variation of normal and shear stresses to the scale of microstructure was numerically investigated. In addition, through the crack analyses, the influence of RMDF randomness and Gauss point number on the crack-tip stress is investigated.

본 논문은 $Ni-A{\ell}_2O_3$로 구성된 금속-세라믹 이종 입자복합재의 2차원 미세구조(microstructure) 생성과 미세구조 스케일(scale)에 따라 정의되는 계층적 모델들의 역학적 특성 분석에 관한 내용이다. 이종 입자복합재의 미세구조는 수학적인 MDF(random morphology description functions) 모델링기법을 복합재의 2차원 RVE(representative volume element) 영역에 적용하여 생성하였다. 그리고 미세구조 생성에 필요한 가우스 함수들의 개수에 따라 미세구조의 계층적 모델을 정의하였다. 한편 임의 미세구조 내 금속과 세라믹 입자가 차지하는 체적분율(volume fraction)은 RMDF 함수의 레벨을 조정함으로서 설정하였다. RMDF기법에 의한 미세구조들은 가우스 함수들의 개수가 일정할지라도 랜덤하게 생성된다. 이렇게 랜덤하게 생성되는 미세구조들을 2차원 보(beam) 모델에 적용하여 미세구조의 스케일에 따른 수직응력과 전단응력의 계층적 변동을 수치 해석적으로 고찰하였다. 또한, 균열해석을 통해 RMDF의 랜덤성과 가우스 함수들의 개수가 균열선단에서의 응력값에 미치는 영향을 고찰하였다.

Keywords

References

  1. Adams, R.A. (1978) Sobolev Spaces, Academic Press, New York.
  2. Cho, J.R., Choi, J.H., Shin, D.S. (2008) Numerical Analysis for the Characteristic Investigation of Homogenization Techniques Used for Equivalent Material Properties of Functionally Graded Material, Veraging and Finite Element Discretization Approaches in the Numerical Analysis of Functionally Graded Materials, J. Comput. Struct. Eng. Inst. Korea, 21(1), pp.13-20.
  3. Cho, J.R., Oden, J.T. (1996) A Priori Modeling Error Estimates of Hierarchical Models for Elasticity Problems for Plate- and Shell-like Structures, Math. & Comput. Model., 23(10), pp.117-133. https://doi.org/10.1016/0895-7177(96)00058-1
  4. Christensen, R.M. (1979) Mechanics of Composite Materials, Wiley/Interscience, New York.
  5. Giannakopulos, A.E., Suresh, S., Olsson, M. (1995) Elastoplastic Analysis of Thermal Cycling: Layered Materials with Compositional Gradients, Acta Metallurgica et Materialia, 43(4), pp.1335-1354. https://doi.org/10.1016/0956-7151(94)00360-T
  6. Koizumi, M. (1997) FGM Activities in Japan, Composites Part B, 28B, pp.1-4.
  7. Lee, W.H., S.C., Park, W.T. (2016) Static and Free Vibration Analysis of FGM Plates on Pasternak Elastic Foundation, J. Comput. Struct. Eng. Inst. Korea, 29(6), pp.529-538. https://doi.org/10.7734/COSEIK.2016.29.6.529
  8. Mori, T., Tanaka, T. (1973) Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta Metalurgica, 21, pp.571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  9. Oden, J.T., Vegamanti, K., Moes, N. (1999) Hierarchical Modeling of Heterogeneous Solids, Comput. Methods Appl. Mech. & Eng., 172(1-4) pp.3-25. https://doi.org/10.1016/S0045-7825(98)00224-2
  10. Paquet, D., Ghosh, S. (2011) Microstructural Effects on Ductile Fracture in Heterogeneous Materials. Part I: Sensitivity Analysis with LE-VCFEM, Fract. Mech., 78(2), pp. 205-225. https://doi.org/10.1016/j.engfracmech.2010.07.009
  11. Park, C., Kang, Y.J., Noh, Y.J., Lim, O. (2017) Characteristic Analysis of Particulate Composites According to a Random Microstructure, J. Comput. Struct. Eng. Inst. Korea, 30(1), pp.23-30. https://doi.org/10.7734/COSEIK.2017.30.1.23
  12. Reiter, T., Dvorak, G.J., Tvergaard, V. (1997) Micromechanical Models for Graded Composite Materials, J. Phys. Solids, 45, pp.1281-1320. https://doi.org/10.1016/S0022-5096(97)00007-0
  13. Roberts, A.P., Teubner, M. (1995) Transport Properties of Heterogeneous Materials Derived from Gaussian Random Fields: Bounds and Simulation, Physics Review E 51, pp.4141-4154. https://doi.org/10.1103/PhysRevE.51.4141
  14. Tomato, Y., Kuroki, K., Mori, T., Tamura, I. (1976) Tensile Deformation of Two-Ductile-Phase Alloys: Flow Curves of ${\alpha}-{\gamma}Fe-Cr-Ni$ Alloys, Mater. Sci. Eng., 24, pp.85-94. https://doi.org/10.1016/0025-5416(76)90097-5
  15. Torquato, S. (2002) Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer Verlag, New York.
  16. Vel, S.S., Goupee, A.J. (2010) Multiscale Thermoelastic Analysis of Random Heterogeneous Materials, Part I: Microstructure Characterization and Homogenization of Materials Properties, Comput. Mater. Sci. 48, pp.22-38. https://doi.org/10.1016/j.commatsci.2009.11.015