• Title/Summary/Keyword: random linear network coding

Search Result 16, Processing Time 0.03 seconds

PPNC: Privacy Preserving Scheme for Random Linear Network Coding in Smart Grid

  • He, Shiming;Zeng, Weini;Xie, Kun;Yang, Hongming;Lai, Mingyong;Su, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1510-1532
    • /
    • 2017
  • In smart grid, privacy implications to individuals and their families are an important issue because of the fine-grained usage data collection. Wireless communications are utilized by many utility companies to obtain information. Network coding is exploited in smart grids, to enhance network performance in terms of throughput, delay, robustness, and energy consumption. However, random linear network coding introduces a new challenge for privacy preserving due to the encoding of data and updating of coefficients in forwarder nodes. We propose a distributed privacy preserving scheme for random linear network coding in smart grid that considers the converged flows character of the smart grid and exploits a homomorphic encryption function to decrease the complexities in the forwarder node. It offers a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic encryption function. The forwarder node random linearly codes the encrypted data and directly processes the cryptotext tags based on the homomorphism feature. Extensive security analysis and performance evaluations demonstrate the validity and efficiency of the proposed scheme.

Integrating Random Network Coding with On-Demand Multicast Routing Protocol

  • Park, Joon-Sang;Baek, Seung Jun
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.775-778
    • /
    • 2012
  • We propose integrating random network coding with the Enhanced On-Demand Multicast Routing Protocol (E-ODMRP). With the Network Coded E-ODMRP (NCE-ODMRP), we present a framework that enables a seamless integration of random linear network coding with conventional ad hoc multicast protocols for enhanced reliability. Simulation results show that the NCE-ODMRP achieves a nearly perfect packet delivery ratio while keeping the route maintenance overhead low to a degree similar to that of the E-ODMRP.

Throughput-Delay Analysis of One-to-ManyWireless Multi-Hop Flows based on Random Linear Network

  • Shang, Tao;Fan, Yong;Liu, Jianwei
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.430-438
    • /
    • 2013
  • This paper addresses the issue of throughput-delay of one-to-many wireless multi-hop flows based on random linear network coding (RLNC). Existing research results have been focusing on the single-hop model which is not suitable for wireless multi-hop networks. In addition, the conditions of related system model are too idealistic. To address these limitations, we herein investigate the performance of a wireless multi-hop network, focusing on the one-to-many flows. Firstly, a system model with multi-hop delay was constructed; secondly, the transmission schemes of system model were gradually improved in terms of practical conditions such as limited queue length and asynchronous forwarding way; thirdly, the mean delay and the mean throughput were quantified in terms of coding window size K and number of destination nodes N for the wireless multi-hop transmission. Our findings show a clear relationship between the multi-hop transmission performance and the network coding parameters. This study results will contribute significantly to the evaluation and the optimization of network coding method.

Comparison of Parallelized Network Coding Performance (네트워크 코딩의 병렬처리 성능비교)

  • Choi, Seong-Min;Park, Joon-Sang;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.19C no.4
    • /
    • pp.247-252
    • /
    • 2012
  • Network coding has been shown to improve various performance metrics in network systems. However, if network coding is implemented as software a huge time delay may be incurred at encoding/decoding stage so it is imperative for network coding to be parallelized to reduce time delay when encoding/decoding. In this paper, we compare the performance of parallelized decoders for random linear network coding (RLC) and pipeline network coding (PNC), a recent development in order to alleviate problems of RLC. We also compare multi-threaded algorithms on multi-core CPUs and massively parallelized algorithms on GPGPU for PNC/RLC.

Confidential Convergecast Based on Random Linear Network Coding for the Multi-hop Wireless Sensor Network

  • Davaabayar Ganchimeg;Sanghyun Ahn;Minyeong Gong
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.252-262
    • /
    • 2024
  • The multi-hop wireless sensor network (WSN) suffers from energy limitation and eavesdropping attacks. We propose a simple and energy-efficient convergecast mechanism using inter-flow random linear network coding that can provide confidentiality to the multi-hop WSN. Our scheme consists of two steps, constructing a logical tree of sensor nodes rooted at the sink node, with using the Bloom filter, and transmitting sensory data encoded by sensor nodes along the logical tree upward to the sink where the encoded data are decoded according to our proposed multi-hop network coding (MHNC) mechanism. We conducted simulations using OMNET++ CASTALIA-3.3 framework and validated that MHNC outperforms the conventional mechanism in terms of packet delivery ratio, data delivery time and energy efficiency.

Exact Decoding Probability of Random Linear Network Coding for Tree Networks

  • Li, Fang;Xie, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.714-727
    • /
    • 2015
  • The hierarchical structure in networks is widely applied in many practical scenarios especially in some emergency cases. In this paper, we focus on a tree network with and without packet loss where one source sends data to n destinations, through m relay nodes employing random linear network coding (RLNC) over a Galois field in parallel transmission systems. We derive closed-form probability expressions of successful decoding at a destination node and at all destination nodes in this multicast scenario. For the convenience of computing, we also propose an upper bound for the failure probability. We then investigate the impact of the major parameters, i.e., the size of finite fields, the number of internal nodes, the number of sink nodes and the channel failure probability, on the decoding performance with simulation results. In addition, numerical results show that, under a fixed exact decoding probability, the required field size can be minimized. When failure decoding probabilities are given, the operation is simple and its complexity is low in a small finite field.

Random Linear Network Coding to Improve Reliability in the Satellite Communication (위성 통신에서 신뢰성 향상을 위한 랜덤 선형 네트워크 코딩 기술)

  • Lee, Kyu-Hwan;Kim, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.700-706
    • /
    • 2013
  • In this paper, we propose a method for applying random linear network coding in satellite communication to improve reliability. In the proposed protocol, network-coded redundancy (NC-R) packets are transmitted in the PEP (Performance Enhancement Proxy). Therefore, if data packets is lost by wireless channel error, they can be recovered by NC-R packets. We also develop the TCP performance model of the proposed protocol and evaluate the performance of the proposed protocol. In the simulation results, It is shown that the proposed protocol can improve the TCP throughput as compared with that of the conventional TCP because the NC-R packets is sent by the sender-side PEP and the receiver-side PEP use these packets to recover the lost packets, resulting in reducing the packet loss in TCP.

Practical Implementation and Performance Evaluation of Random Linear Network Coding (랜덤 선형 네트워크 코딩의 실용적 설계 및 성능 분석)

  • Lee, Gyujin;Shin, Yeonchul;Koo, Jonghoe;Choi, Sunghyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1786-1792
    • /
    • 2015
  • Random linear network coding (RLNC) is widely employed to enhance the reliability of wireless multicast. In RLNC encoding/decoding, Galois Filed (GF) arithmetic is typically used since all the operations can be performed with symbols of finite bits. Considering the architecture of commercial computers, the complexity of arithmetic operations is constant regardless of the dimension of GF m, if m is smaller than 32 and pre-calculated tables are used for multiplication/division. Based on this, we show that the complexity of RLNC inversely proportional to m. Considering additional overheads, i.e., the increase of header length and memory usage, we determine the practical value of m. We implement RLNC in a commercial computer and evaluate the codec throughput with respect to the type of the tables for multiplication/division and the number of original packets to encode with each other.

New Secure Network Coding Scheme with Low Complexity (낮은 복잡도의 보안 네트워크 부호화)

  • Kim, Young-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.295-302
    • /
    • 2013
  • In the network coding, throughput can be increased by allowing the transformation of the received data at the intermediate nodes. However, the adversary can obtain more information at the intermediate nodes and make troubles for decoding of transmitted data at the sink nodes by modifying transmitted data at the compromised nodes. In order to resist the adversary activities, various information theoretic or cryptographic secure network coding schemes are proposed. Recently, a secure network coding based on the cryptographic hash function can be used at the random network coding. However, because of the computational resource requirement for cryptographic hash functions, networks with limited computational resources such as sensor nodes have difficulties to use the cryptographic solution. In this paper, we propose a new secure network coding scheme which uses linear transformations and table lookup and safely transmits n-1 packets at the random network coding under the assumption that the adversary can eavesdrop at most n-1 nodes. It is shown that the proposed scheme is an all-or-nothing transform (AONT) and weakly secure network coding in the information theory.

Practical Schemes for Tunable Secure Network Coding

  • Liu, Guangjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1193-1209
    • /
    • 2015
  • Network coding is promising to maximize network throughput and improve the resilience to random network failures in various networking systems. In this paper, the problem of providing efficient confidentiality for practical network coding system against a global eavesdropper (with full eavesdropping capabilities to the network) is considered. By exploiting a novel combination between the construction technique of systematic Maximum Distance Separable (MDS) erasure coding and traditional cryptographic approach, two efficient schemes are proposed that can achieve the maximum possible rate and minimum encryption overhead respectively on top of any communication network or underlying linear network code. Every generation is first subjected to an encoding by a particular matrix generated by two (or three) Vandermonde matrices, and then parts of coded vectors (or secret symbols) are encrypted before transmitting. The proposed schemes are characterized by tunable and measurable degrees of security and also shown to be of low overhead in computation and bandwidth.