• Title/Summary/Keyword: random fuzzy mapping

Search Result 7, Processing Time 0.021 seconds

FUZZY NONLINEAR RANDOM VARIATIONAL INCLUSION PROBLEMS INVOLVING ORDERED RME-MULTIVALUED MAPPING IN BANACH SPACES

  • Kim, Jong Kyu;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • v.34 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this paper, we consider a fuzzy nonlinear random variational inclusion problems involving ordered RME-multivalued mapping in ordered Banach spaces. By using the random relaxed resolvent operator and its properties, we suggest an random iterative algorithm. Finally both the existence of the random solution of the original problem and the convergence of the random iterative sequences generated by random algorithm are proved.

FUZZY GENERAL NONLINEAR ORDERED RANDOM VARIATIONAL INEQUALITIES IN ORDERED BANACH SPACES

  • Salahuddin, Salahuddin;Lee, Byung-Soo
    • East Asian mathematical journal
    • /
    • v.32 no.5
    • /
    • pp.685-700
    • /
    • 2016
  • The main object of this work to introduced and studied a new class of fuzzy general nonlinear ordered random variational inequalities in ordered Banach spaces. By using the random B-restricted accretive mapping with measurable mappings ${\alpha},{\alpha}^{\prime}:{\Omega}{\rightarrow}(0,1)$, an existence of random solutions for this class of fuzzy general nonlinear ordered random variational inequality (equation) with fuzzy mappings is established, a random approximation algorithm is suggested for fuzzy mappings, and the relation between the first value $x_0(t)$ and the random solutions of fuzzy general nonlinear ordered random variational inequality is discussed.

GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION PROBLEMS WITH RANDOM FUZZY MAPPINGS IN BANACH SPACES

  • Balooee, Javad
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.243-267
    • /
    • 2013
  • This paper is dedicated to study a new class of general nonlinear random A-maximal $m$-relaxed ${\eta}$-accretive (so called (A, ${\eta}$)-accretive [49]) equations with random relaxed cocoercive mappings and random fuzzy mappings in $q$-uniformly smooth Banach spaces. By utilizing the resolvent operator technique for A-maximal $m$-relaxed ${\eta}$-accretive mappings due to Lan et al. and Chang's lemma [13], some new iterative algorithms with mixed errors for finding the approximate solutions of the aforesaid class of nonlinear random equations are constructed. The convergence analysis of the proposed iterative algorithms under some suitable conditions are also studied.

A RANDOM GENERALIZED NONLINEAR IMPLICIT VARIATIONAL-LIKE INCLUSION WITH RANDOM FUZZY MAPPINGS

  • Khan, F.A.;Aljohani, A.S.;Alshehri, M.G.;Ali, J.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.717-731
    • /
    • 2021
  • In this paper, we introduce and study a new class of random generalized nonlinear implicit variational-like inclusion with random fuzzy mappings in a real separable Hilbert space and give its fixed point formulation. Using the fixed point formulation and the proximal mapping technique for strongly maximal monotone mapping, we suggest and analyze a random iterative scheme for finding the approximate solution of this class of inclusion. Further, we prove the existence of solution and discuss the convergence analysis of iterative scheme of this class of inclusion. Our results in this paper improve and generalize several known results in the literature.

A NEW CLASS OF RANDOM COMPLETELY GENERALIZED STRONGLY NONLINEAR QUASI-COMPLEMENTARITY PROBLEMS FOR RANDOM FUZZY MAPPINGS

  • Huang, Nam-Jing
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.357-372
    • /
    • 1998
  • In this paper we introduce and study a new class of random completely generalized strongly nonlinear quasi -comple- mentarity problems with non-compact valued random fuzzy map-pings and construct some new iterative algorithms for this kind of random fuzzy quasi-complementarity problems. We also prove the existence of random solutions for this class of random fuzzy quasi-complementarity problems and the convergence of random iterative sequences generated by the algorithms.

AN ITERATIVE ALGORITHM FOR EXTENDED GENERALIZED NONLINEAR VARIATIONAL INCLUSIONS FOR RANDOM FUZZY MAPPINGS

  • Dar, A.H.;Sarfaraz, Mohd.;Ahmad, M.K.
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.129-141
    • /
    • 2018
  • In this slush pile, we introduce a new kind of variational inclusions problem stated as random extended generalized nonlinear variational inclusions for random fuzzy mappings. We construct an iterative scheme for the this variational inclusion problem and also discuss the existence of random solutions for the problem. Further, we show that the approximate solutions achieved by the generated scheme converge to the required solution of the problem.

A Study on Three Phase Partial Discharge Pattern Classification with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 이용한 삼상 부분방전 패턴분류에 관한 연구)

  • Oh, Sung-Kwun;Kim, Hyun-Ki;Kim, Jung-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.544-553
    • /
    • 2013
  • In this paper, we propose the pattern classifier of Radial Basis Function Neural Networks(RBFNNs) for diagnosis of 3-phase partial discharge. Conventional methods map the partial discharge/noise data on 3-PARD map, and decide whether the partial discharge occurs or not from 3-phase or neutral point. However, it is decided based on his own subjective knowledge of skilled experter. In order to solve these problems, the mapping of data as well as the classification of phases are considered by using the general 3-PARD map and PA method, and the identification of phases occurring partial discharge/noise discharge is done. In the sequel, the type of partial discharge occurring on arbitrary random phase is classified and identified by fuzzy clustering-based polynomial Radial Basis Function Neural Networks(RBFNN) classifier. And by identifying the learning rate, momentum coefficient, and fuzzification coefficient of FCM fuzzy clustering with the aid of PSO algorithm, the RBFNN classifier is optimized. The virtual simulated data and the experimental data acquired from practical field are used for performance estimation of 3-phase partial discharge pattern classifier.