• 제목/요약/키워드: random forest model

검색결과 573건 처리시간 0.022초

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

TadGAN 기반 시계열 이상 탐지를 활용한 전처리 프로세스 연구 (A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection)

  • 이승훈;김용수
    • 품질경영학회지
    • /
    • 제50권3호
    • /
    • pp.459-471
    • /
    • 2022
  • Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.

잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법 (Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models)

  • 주영석;신승준
    • 산업경영시스템학회지
    • /
    • 제45권3호
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.

Sentiment Analysis of COVID-19 Vaccination in Saudi Arabia

  • Sawsan Alowa;Lama Alzahrani;Noura Alhakbani;Hend Alrasheed
    • International Journal of Computer Science & Network Security
    • /
    • 제23권2호
    • /
    • pp.13-30
    • /
    • 2023
  • Since the COVID-19 vaccine became available, people have been sharing their opinions on social media about getting vaccinated, causing discussions of the vaccine to trend on Twitter alongside certain events, making the website a rich data source. This paper explores people's perceptions regarding the COVID-19 vaccine during certain events and how these events influenced public opinion about the vaccine. The data consisted of tweets sent during seven important events that were gathered within 14 days of the first announcement of each event. These data represent people's reactions to these events without including irrelevant tweets. The study targeted tweets sent in Arabic from users located in Saudi Arabia. The data were classified as positive, negative, or neutral in tone. Four classifiers were used-support vector machine (SVM), naïve Bayes (NB), logistic regression (LOGR), and random forest (RF)-in addition to a deep learning model using BiLSTM. The results showed that the SVM achieved the highest accuracy, at 91%. Overall perceptions about the COVID-19 vaccine were 54% negative, 36% neutral, and 10% positive.

머신 러닝 접근 방식을 통한 가짜 채용 탐지 (Detecting Fake Job Recruitment with a Machine Learning Approach)

  • 일킨 타히예프;이재흥
    • 스마트미디어저널
    • /
    • 제12권2호
    • /
    • pp.36-41
    • /
    • 2023
  • 지원자 추적 시스템의 등장으로 온라인 채용이 활성화되면서 채용 사기가 심각한 문제로 대두되고 있다. 이 연구는 온라인 채용 환경에서 채용 사기를 탐지할 수 있는 신뢰할 수 있는 모델을 개발하여 비용 손실을 줄이고 개인 사생활 보호를 강화하고자 한다. 이 연구의 주요 기여는 데이터를 탐색적으로 분석하여 얻은 통찰력을 활용하여 어떤 채용 정보가 사기인지, 아니면 합법적인지를 구분할 수 있는 자동화된 방법론을 제공하는데 있다. 캐글에서 제공하는 채용 사기 데이터 집합인 EMSCAD를 사용하여 다양한 단일 분류기 및 앙상블 분류기 기반 머신러닝 모델을 훈련하고 평가하였으며, 그 결과로 앙상블 분류기인 랜덤 포레스트 분류기가 정확도 98.67%, F1 점수 0.81로 가장 좋은 결과를 보이는 것을 알 수 있었다.

Relevancy contemplation in medical data analytics and ranking of feature selection algorithms

  • P. Antony Seba;J. V. Bibal Benifa
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.448-461
    • /
    • 2023
  • This article performs a detailed data scrutiny on a chronic kidney disease (CKD) dataset to select efficient instances and relevant features. Data relevancy is investigated using feature extraction, hybrid outlier detection, and handling of missing values. Data instances that do not influence the target are removed using data envelopment analysis to enable reduction of rows. Column reduction is achieved by ranking the attributes through feature selection methodologies, namely, extra-trees classifier, recursive feature elimination, chi-squared test, analysis of variance, and mutual information. These methodologies are ranked via Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) using weight optimization to identify the optimal features for model building from the CKD dataset to facilitate better prediction while diagnosing the severity of the disease. An efficient hybrid ensemble and novel similarity-based classifiers are built using the pruned dataset, and the results are thereafter compared with random forest, AdaBoost, naive Bayes, k-nearest neighbors, and support vector machines. The hybrid ensemble classifier yields a better prediction accuracy of 98.31% for the features selected by extra tree classifier (ETC), which is ranked as the best by TOPSIS.

Identification of Pb-Zn ore under the condition of low count rate detection of slim hole based on PGNAA technology

  • Haolong Huang;Pingkun Cai;Wenbao Jia;Yan Zhang
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1708-1717
    • /
    • 2023
  • The grade analysis of lead-zinc ore is the basis for the optimal development and utilization of deposits. In this study, a method combining Prompt Gamma Neutron Activation Analysis (PGNAA) technology and machine learning is proposed for lead-zinc mine borehole logging, which can identify lead-zinc ores of different grades and gangue in the formation, providing real-time grade information qualitatively and semi-quantitatively. Firstly, Monte Carlo simulation is used to obtain a gamma-ray spectrum data set for training and testing machine learning classification algorithms. These spectra are broadened, normalized and separated into inelastic scattering and capture spectra, and then used to fit different classifier models. When the comprehensive grade boundary of high- and low-grade ores is set to 5%, the evaluation metrics calculated by the 5-fold cross-validation show that the SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naive Bayes) and RF (Random Forest) models can effectively distinguish lead-zinc ore from gangue. At the same time, the GNB model has achieved the optimal accuracy of 91.45% when identifying high- and low-grade ores, and the F1 score for both types of ores is greater than 0.9.

설명 가능한 인공지능 기술을 활용한 가스누출과 고혈압의 연관 분석 (Explainable analysis of the Relationship between Hypertension with Gas leakages)

  • 홍고르출;조겨리;김미혜
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.55-56
    • /
    • 2022
  • Hypertension is a severe health problem and increases the risk of other health issues, such as heart disease, heart attack, and stroke. In this research, we propose a machine learning-based prediction method for the risk of chronic hypertension. The proposed method consists of four main modules. In the first module, the linear interpolation method fills missing values of the integration of gas and meteorological datasets. In the second module, the OrdinalEncoder-based normalization is followed by the Decision tree algorithm to select important features. The prediction analysis module builds three models based on k-Nearest Neighbors, Decision Tree, and Random Forest to predict hypertension levels. Finally, the features used in the prediction model are explained by the DeepSHAP approach. The proposed method is evaluated by integrating the Korean meteorological agency dataset, natural gas leakage dataset, and Korean National Health and Nutrition Examination Survey dataset. The experimental results showed important global features for the hypertension of the entire population and local components for particular patients. Based on the local explanation results for a randomly selected 65-year-old male, the effect of hypertension increased from 0.694 to 1.249 when age increased by 0.37 and gas loss increased by 0.17. Therefore, it is concluded that gas loss is the cause of high blood pressure.

Image texture feature를 이용하여 비소세포폐암 전이 예측 머신러닝 모델 연구 (Study of machine learning model for predicting non-small cell lung cancer metastasis using image texture feature)

  • 주혜민;우상근
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.313-315
    • /
    • 2023
  • 본 논문에서는 18F-FDG PET과 CT에서 추출한 영상인자를 이용하여 비소세포폐암의 전이를 예측하는 머신러닝 모델을 생성하였다. 18F-FDG는 종양의 포도당 대사 시 사용되며 이를 추적하여 환자의 암 세포를 진단하는데 사용되는 의료영상 기법 중 하나이다. PET과 CT 영상에서 추출한 이미지 특징은 종양의 생물학적 특성을 반영하며 해당 ROI로부터 계산되어 정량화된 값이다. 본 연구에서는 환자의 의료영상으로부터 image texture 프절 전이 예측에 있어 유의한 인자인지를 확인하기 위하여 AUC를 계산하고 단변량 분석을 진행하였다. PET과 CT에서 각각 4개(GLRLM_GLNU, SHAPE_Compacity only for 3D ROI, SHAPE_Volume_vx, SHAPE_Volume_mL)와 2개(NGLDM_Busyness, TLG_ml)의 image texture feature를 모델의 생성에 사용하였다. 생성된 각 모델의 성능을 평가하기 위해 accuracy와 AUC를 계산하였으며 그 결과 random forest(RF) 모델의 예측 정확도가 가장 높았다. 추출된 PET과 CT image texture feature를 함께 사용하여 모델을 훈련하였을 때가 각각 따로 사용하였을 때 보다 예측 성능이 개선됨을 확인하였다. 추출된 영상인자가 림프절 전이를 나타내는 바이오마커로서의 가능성을 확인할 수 있었으며 이러한 연구 결과를 바탕으로 개인별 의료 영상을 기반으로 한 비소세포폐암의 치료 전략을 수립할 수 있을 것이라 기대된다.

  • PDF

콘크리트 탄산화 및 열효과에 의한 경년열화 예측을 위한 기계학습 모델의 정확성 검토 (Accuracy Evaluation of Machine Learning Model for Concrete Aging Prediction due to Thermal Effect and Carbonation)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.81-88
    • /
    • 2023
  • Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms-specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms-to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.