• Title/Summary/Keyword: random forest model

Search Result 538, Processing Time 0.03 seconds

A Study on the Classic Theory-Driven Predictors of Adolescent Online and Offline Delinquency using the Random Forest Machine Learning Algorithm (랜덤포레스트 머신러닝 기법을 활용한 전통적 비행이론기반 청소년 온·오프라인 비행 예측요인 연구)

  • TaekHo, Lee;SeonYeong, Kim;YoonSun, Han
    • Korean Journal of Culture and Social Issue
    • /
    • v.28 no.4
    • /
    • pp.661-690
    • /
    • 2022
  • Adolescent delinquency is a substantial social problem that occurs in both offline and online domains. The current study utilized random forest algorithms to identify predictors of adolescents' online and offline delinquency. Further, we explored the applicability of classic delinquency theories (social learning, strain, social control, routine activities, and labeling theory). We used the first-grade and fourth-grade elementary school panels as well as the first-grade middle school panel (N=4,137) among the sixth wave of the nationally-representative Korean Children and Youth Panel Survey 2010 for analysis. Random forest algorithms were used instead of the conventional regression analysis to improve the predictive performance of the model and possibly consider many predictors in the model. Random forest algorithm results showed that classic delinquency theories designed to explain offline delinquency were also applicable to online delinquency. Specifically, salient predictors of online delinquency were closely related to individual factors(routine activities and labeling theory). Social factors(social control and social learning theory) were particularly important for understanding offline delinquency. General strain theory was the commonly important theoretical framework that predicted both offline and online delinquency. Findings may provide evidence for more tailored prevention and intervention strategies against offline and online adolescent delinquency.

Development of a Water Quality Indicator Prediction Model for the Korean Peninsula Seas using Artificial Intelligence (인공지능 기법을 활용한 한반도 해역의 수질평가지수 예측모델 개발)

  • Seong-Su Kim;Kyuhee Son;Doyoun Kim;Jang-Mu Heo;Seongeun Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.24-35
    • /
    • 2023
  • Rapid industrialization and urbanization have led to severe marine pollution. A Water Quality Index (WQI) has been developed to allow the effective management of marine pollution. However, the WQI suffers from problems with loss of information due to the complex calculations involved, changes in standards, calculation errors by practitioners, and statistical errors. Consequently, research on the use of artificial intelligence techniques to predict the marine and coastal WQI is being conducted both locally and internationally. In this study, six techniques (RF, XGBoost, KNN, Ext, SVM, and LR) were studied using marine environmental measurement data (2000-2020) to determine the most appropriate artificial intelligence technique to estimate the WOI of five ecoregions in the Korean seas. Our results show that the random forest method offers the best performance as compared to the other methods studied. The residual analysis of the WQI predicted score and actual score using the random forest method shows that the temporal and spatial prediction performance was exceptional for all ecoregions. In conclusion, the RF model of WQI prediction developed in this study is considered to be applicable to Korean seas with high accuracy.

Research on artificial intelligence based battery analysis and evaluation methods using electric vehicle operation data (전기 차 운행 데이터를 활용한 인공지능 기반의 배터리 분석 및 평가 방법 연구)

  • SeungMo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.385-391
    • /
    • 2023
  • As the use of electric vehicles has increased to minimize carbon emissions, the analyzing the state and performance of lithium-ion batteries that is instrumental in electric vehicles have been important. Comprehensive analysis using not only the voltage, current and temperature of the battery pack, which can affect the condition and performance of the battery, but also the driving data and charging pattern data of the electric vehicle is required. Therefore, a thorough analysis is imperative, utilizing electric vehicle operation data, charging pattern data, as well as battery pack voltage, current, and temperature data, which collectively influence the condition and performance of the battery. Therefore, collection and preprocessing of battery data collected from electric vehicles, collection and preprocessing of data on driver driving habits in addition to simple battery data, detailed design and modification of artificial intelligence algorithm based on the analyzed influencing factors, and A battery analysis and evaluation model was designed. In this paper, we gathered operational data and battery data from real-time electric buses. These data sets were then utilized to train a Random Forest algorithm. Furthermore, a comprehensive assessment of battery status, operation, and charging patterns was conducted using the explainable Artificial Intelligence (XAI) algorithm. The study identified crucial influencing factors on battery status, including rapid acceleration, rapid deceleration, sudden stops in driving patterns, the number of drives per day in the charging and discharging pattern, daily accumulated Depth of Discharge (DOD), cell voltage differences during discharge, maximum cell temperature, and minimum cell temperature. These factors were confirmed to significantly impact the battery condition. Based on the identified influencing factors, a battery analysis and evaluation model was designed and assessed using the Random Forest algorithm. The results contribute to the understanding of battery health and lay the foundation for effective battery management in electric vehicles.

Machine learning-based analysis and prediction model on the strengthening mechanism of biopolymer-based soil treatment

  • Haejin Lee;Jaemin Lee;Seunghwa Ryu;Ilhan Chang
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.381-390
    • /
    • 2024
  • The introduction of bio-based materials has been recommended in the geotechnical engineering field to reduce environmental pollutants such as heavy metals and greenhouse gases. However, bio-treated soil methods face limitations in field application due to short research periods and insufficient verification of engineering performance, especially when compared to conventional materials like cement. Therefore, this study aimed to develop a machine learning model for predicting the unconfined compressive strength, a representative soil property, of biopolymer-based soil treatment (BPST). Four machine learning algorithms were compared to determine a suitable model, including linear regression (LR), support vector regression (SVR), random forest (RF), and neural network (NN). Except for LR, the SVR, RF, and NN algorithms exhibited high predictive performance with an R2 value of 0.98 or higher. The permutation feature importance technique was used to identify the main factors affecting the strength enhancement of BPST. The results indicated that the unconfined compressive strength of BPST is affected by mean particle size, followed by biopolymer content and water content. With a reliable prediction model, the proposed model can present guidelines prior to laboratory testing and field application, thereby saving a significant amount of time and money.

A Comparison Study of Forecasting Time Series Models for the Harmful Gas Emission (유해가스 배출량에 대한 시계열 예측 모형의 비교연구)

  • Jang, Moonsoo;Heo, Yoseob;Chung, Hyunsang;Park, Soyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.323-331
    • /
    • 2021
  • With global warming and pollution problems, accurate forecasting of the harmful gases would be an essential alarm in our life. In this paper, we forecast the emission of the five gases(SOx, NO2, NH3, H2S, CH4) using the time series model of ARIMA, the learning algorithms of Random forest, and LSTM. We find that the gas emission data depends on the short-term memory and behaves like a random walk. As a result, we compare the RMSE, MAE, and MAPE as the measure of the prediction performance under the same conditions given to three models. We find that ARIMA forecasts the gas emissions more precisely than the other two learning-based methods. Besides, the ARIMA model is more suitable for the real-time forecasts of gas emissions because it is faster for modeling than the two learning algorithms.

Clustering and classification to characterize daily electricity demand (시간단위 전력사용량 시계열 패턴의 군집 및 분류분석)

  • Park, Dain;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.395-406
    • /
    • 2017
  • The purpose of this study is to identify the pattern of daily electricity demand through clustering and classification. The hourly data was collected by KPS (Korea Power Exchange) between 2008 and 2012. The time trend was eliminated for conducting the pattern of daily electricity demand because electricity demand data is times series data. We have considered k-means clustering, Gaussian mixture model clustering, and functional clustering in order to find the optimal clustering method. The classification analysis was conducted to understand the relationship between external factors, day of the week, holiday, and weather. Data was divided into training data and test data. Training data consisted of external factors and clustered number between 2008 and 2011. Test data was daily data of external factors in 2012. Decision tree, random forest, Support vector machine, and Naive Bayes were used. As a result, Gaussian model based clustering and random forest showed the best prediction performance when the number of cluster was 8.

Selection of Performance of Bias Correction using TOPSIS method (TOPSIS 방법을 이용한 편의 보정 방법 선정)

  • Song, Young Hoon;Chung, Eun Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.306-306
    • /
    • 2019
  • 전지구적 기온상승으로 인해 미래기후의 관한 연구가 중요시 되고 있다. 위와 같은 현상으로 인하여 다양한 기후변화 연구가 진행되고 있다. 미래기후 연구에는 GCM (General Circulation Model) 모의 결과가 이용된다. 격자 자료로 구성된 GCM은 연구 지점으로 지역적 상세화와 연구지역의 관측자료 사이의 편이 보정(bias correction)이 필수적이다. 위와 같은 근거로 편이 보정 방법의 선택은 매우 중요하며 편의 보정의 방법에 따라서 결과가 다르게 도출될 수 있다. 또한 국내외 연구에서는 다양한 상세화 기법과 편이 보정 기법을 분석 및 평가하는 연구가 진행되고 있으며, 편의 기법 중 대표적인 기법인 Quantile mapping과 Random Forest 기법이 있다. Quantile mapping 기법은 GCM의 과거 모의 데이터와의 편이 보정에 있어서 우수하게 나타났으나, GCM 데이터의 미래 예측 기간(2010년~2018년)까지의 데이터에서는 극한 강수를 정량적으로 분석 가능한 Random Forest 기법이 편이 보정 과정에서 성능이 우수할 것으로 판단된다. 본 연구에서는 우리나라 21개 관측소를 기준으로 총 4개의 GCM(GISS, CSIRO, CCSM4,MIROC5)의 과거 기간 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량을 편의 보정하는 방법에 있어서 편의 보정 기법의 성능을 비교한 결과와 GCM 미래 예측 기간 자료(2010년~2018년)에서의 편의 보정 기법의 성능 결과를 비교하였다. 이를 토대로 편이 보정 기법의 결과를 6개의 평가지수를 이용하여 정량적으로 분석하였으며, 다기준의사결정기법인 TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)를 이용하여 편이 보정기법들의 성능에 있어서 우선순위를 선정하였다. 본 연구에서 편이 보정 방법으로 Quantile mapping 방법을 사용했으며, Quantile mapping의 기법으로는 비모수 변환법(non-parametric transformation)과 분포기반 변환법(distribution derived transformation)이 사용되었다. 또한 머신러닝 방법 중 하나인 Random Forest 방법을 동시에 사용하여 결과를 비교하였다. 또한 GCM 자료가 격자식으로 제공하고 있기 때문에 관측소 강수량도 공간적으로 환산하여야 하는데, 본 연구에서는 역거리 가중치법(inverse distance weighting, IDW) 방법을 이용하였다.

  • PDF

Development of a Gangwon Province Forest Fire Prediction Model using Machine Learning and Sampling (머신러닝과 샘플링을 이용한 강원도 지역 산불발생예측모형 개발)

  • Chae, Kyoung-jae;Lee, Yu-Ri;cho, yong-ju;Park, Ji-Hyun
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 2018
  • The study is based on machine learning techniques to increase the accuracy of the forest fire predictive model. It used 14 years of data from 2003 to 2016 in Gang-won-do where forest fire were the most frequent. To reduce weather data errors, Gang-won-do was divided into nine areas and weather data from each region was used. However, dividing the forest fire forecast model into nine zones would make a large difference between the date of occurrence and the date of not occurring. Imbalance issues can degrade model performance. To address this, several sampling methods were applied. To increase the accuracy of the model, five indices in the Canadian Frost Fire Weather Index (FWI) were used as derived variable. The modeling method used statistical methods for logistic regression and machine learning methods for random forest and xgboost. The selection criteria for each zone's final model were set in consideration of accuracy, sensitivity and specificity, and the prediction of the nine zones resulted in 80 of the 104 fires that occurred, and 7426 of the 9758 non-fires. Overall accuracy was 76.1%.

A Study on the Prediction Model of the Elderly Depression

  • SEO, Beom-Seok;SUH, Eung-Kyo;KIM, Tae-Hyeong
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.7
    • /
    • pp.29-40
    • /
    • 2020
  • Purpose: In modern society, many urban problems are occurring, such as aging, hollowing out old city centers and polarization within cities. In this study, we intend to apply big data and machine learning methodologies to predict depression symptoms in the elderly population early on, thus contributing to solving the problem of elderly depression. Research design, data and methodology: Machine learning techniques used random forest and analyzed the correlation between CES-D10 and other variables, which are widely used worldwide, to estimate important variables. Dependent variables were set up as two variables that distinguish normal/depression from moderate/severe depression, and a total of 106 independent variables were included, including subjective health conditions, cognitive abilities, and daily life quality surveys, as well as the objective characteristics of the elderly as well as the subjective health, health, employment, household background, income, consumption, assets, subjective expectations, and quality of life surveys. Results: Studies have shown that satisfaction with residential areas and quality of life and cognitive ability scores have important effects in classifying elderly depression, satisfaction with living quality and economic conditions, and number of outpatient care in living areas and clinics have been important variables. In addition, the results of a random forest performance evaluation, the accuracy of classification model that classify whether elderly depression or not was 86.3%, the sensitivity 79.5%, and the specificity 93.3%. And the accuracy of classification model the degree of elderly depression was 86.1%, sensitivity 93.9% and specificity 74.7%. Conclusions: In this study, the important variables of the estimated predictive model were identified using the random forest technique and the study was conducted with a focus on the predictive performance itself. Although there are limitations in research, such as the lack of clear criteria for the classification of depression levels and the failure to reflect variables other than KLoSA data, it is expected that if additional variables are secured in the future and high-performance predictive models are estimated and utilized through various machine learning techniques, it will be able to consider ways to improve the quality of life of senior citizens through early detection of depression and thus help them make public policy decisions.

Comparative study of prediction models for corporate bond rating (국내 회사채 신용 등급 예측 모형의 비교 연구)

  • Park, Hyeongkwon;Kang, Junyoung;Heo, Sungwook;Yu, Donghyeon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.367-382
    • /
    • 2018
  • Prediction models for a corporate bond rating in existing studies have been developed using various models such as linear regression, ordered logit, and random forest. Financial characteristics help build prediction models that are expected to be contained in the assigning model of the bond rating agencies. However, the ranges of bond ratings in existing studies vary from 5 to 20 and the prediction models were developed with samples in which the target companies and the observation periods are different. Thus, a simple comparison of the prediction accuracies in each study cannot determine the best prediction model. In order to conduct a fair comparison, this study has collected corporate bond ratings and financial characteristics from 2013 to 2017 and applied prediction models to them. In addition, we applied the elastic-net penalty for the linear regression, the ordered logit, and the ordered probit. Our comparison shows that data-driven variable selection using the elastic-net improves prediction accuracy in each corresponding model, and that the random forest is the most appropriate model in terms of prediction accuracy, which obtains 69.6% accuracy of the exact rating prediction on average from the 5-fold cross validation.