• 제목/요약/키워드: random forest classification

검색결과 308건 처리시간 0.028초

자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정 (Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification)

  • 김영남
    • 대한상한금궤의학회지
    • /
    • 제14권1호
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

Effectiveness of Repeated Examination to Diagnose Enterobiasis in Nursery School Groups

  • Remm, Mare;Remm, Kalle
    • Parasites, Hosts and Diseases
    • /
    • 제47권3호
    • /
    • pp.235-241
    • /
    • 2009
  • The aim of this study was to estimate the benefit from repeated examinations in the diagnosis of enterobiasis in nursery school groups, and to test the effectiveness of individual-based risk predictions using different methods. A total of 604 children were examined using double, and 96 using triple, anal swab examinations. The questionnaires for parents, structured observations, and interviews with supervisors were used to identify factors of possible infection risk. In order to model the risk of enterobiasis at individual level, a similarity-based machine learning and prediction software Constud was compared with data mining methods in the Statistica 8 Data Miner software package. Prevalence according to a single examination was 22.5%; the increase as a result of double examinations was 8.2%. Single swabs resulted in an estimated prevalence of 20.1% among children examined 3 times; double swabs increased this by 10.1%, and triple swabs by 7.3%. Random forest classification, boosting classification trees, and Constud correctly predicted about 2/3 of the results of the second examination. Constud estimated a mean prevalence of 31.5% in groups. Constud was able to yield the highest overall fit of individual-based predictions while boosting classification tree and random forest models were more effective in recognizing Enterobius positive persons. As a rule, the actual prevalence of enterobiasis is higher than indicated by a single examination. We suggest using either the values of the mean increase in prevalence after double examinations compared to single examinations or group estimations deduced from individual-level modelled risk predictions.

GLCM 기반 UAV 영상의 감독분류를 이용한 저수구역 내 농경지 탐지 (Detection of Cropland in Reservoir Area by Using Supervised Classification of UAV Imagery Based on GLCM)

  • 김규문;최재완
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.433-442
    • /
    • 2018
  • 저수구역은 계획된 홍수위에 의하여 둘러싸인 지역 혹은 댐의 계획된 홍수위 내에 있는 지역으로 정의된다. 본 연구에서는 저수구역 내 농경지를 탐지하기 위하여, 대표적인 기계학습 기법인 RF (Random Forest) 기반의 감독 분류 방법을 적용하였다. 저수구역 내의 농경지를 효과적으로 분류하기 위하여, 질감정보를 정량화하기 위한 대표적인 기법인 GLCM (Gray Level Co-occurrence Matrix)과 NDWI (Normalized Difference Water Index), NDVI (Normalized Difference Vegetation Index)를 추가적인 입력자료로 활용하였다. 특히, 질감정보를 생성하는데 사용된 윈도우 크기가 농경지의 분류 정확도에 미치는 영향을 분석하여, 저수구역 내의 농경지를 효과적으로 분류하기 위한 방법론을 제시하였다. 실험결과, UAV 영상을 이용한 분류결과를 통하여 취득된 다중분광영상과 NDVI, NDWI, GLCM 영상들을 이용하여 저수구역 내의 농경지를 효과적으로 탐지할 수 있음을 확인하였다. 또한, GLCM의 윈도우 크기가 분류정확도를 향상시키기 위한 중요한 변수임을 확인하였다.

Random Forest Model for Silicon-to-SPICE Gap and FinFET Design Attribute Identification

  • Won, Hyosig;Shimazu, Katsuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권5호
    • /
    • pp.358-365
    • /
    • 2016
  • We propose a novel application of random forest, a machine learning-based general classification algorithm, to analyze the influence of design attributes on the silicon-to-SPICE (S2S) gap. To improve modeling accuracy, we introduce magnification of learning data as well as randomization for the counting of design attributes to be used for each tree in the forest. From the automatically generated decision trees, we can extract the so-called importance and impact indices, which identify the most significant design attributes determining the S2S gap. We apply the proposed method to actual silicon data, and observe that the identified design attributes show a clear trend in the S2S gap. We finally unveil 10nm key fin-shaped field effect transistor (FinFET) structures that result in a large S2S gap using the measurement data from 10nm test vehicles specialized for model-hardware correlation.

이수식 TBM 데이터와 랜덤포레스트를 이용한 일축압축강도 분류 예측에 관한 연구 (A Study on the Prediction of Uniaxial Compressive Strength Classification Using Slurry TBM Data and Random Forest)

  • 강태호;최순욱;이철호;장수호
    • 터널과지하공간
    • /
    • 제33권6호
    • /
    • pp.547-560
    • /
    • 2023
  • 최근 국내외에서 기계학습 기법으로 TBM 굴진 데이터와 지반데이터를 분석하는 지반 분류예측 연구가 증가하고 있다. 본 연구에서는 다양한 분야에서 널리 사용되고 있는 머신러닝 기법들 중 의사결정트리 기반 랜덤포레스트 모델을 3곳의 이수식 TBM 현장에서 획득한 기계 데이터와 지반 데이터에 적용하여 일축압축강도에 대한 다중 분류예측 연구를 하였다. 일축압축강도의 다중 분류 예측을 위해서 학습과 테스트 데이터를 7:3으로 분할하였으며, 최적의 파라미터를 선정을 위해서 분할 교차검증을 포함하는 그리드 서치를 활용하였다. 의사 결정 트리를 기반으로 한 랜덤 포레스트를 사용하여 일축압축강도 분류 학습을 수행한 결과, 다중 분류 예측 모델의 정확도는 학습 세트와 테스트 세트에서 각각 0.983 및 0.982로 모두 높게 나타났다. 다만, 클래스 간 데이터 분포의 불균형으로 인하여 클래스 4에서는 재현율이 낮게 평가되었다. 다양한 현장에서 획득한 일축압축강도의 측정 데이터양을 늘리는 연구가 필요한 것으로 판단된다.

단백체 스펙트럼 데이터의 분류를 위한 랜덤 포리스트 기반 특성 선택 알고리즘 (Feature Selection for Classification of Mass Spectrometric Proteomic Data Using Random Forest)

  • 온승엽;지승도;한미영
    • 한국시뮬레이션학회논문지
    • /
    • 제22권4호
    • /
    • pp.139-147
    • /
    • 2013
  • 본 논문에서는 질량 분석 방법에 의하여 산출된 단백체 데이터(mass spectrometric proteomic data)의 분류 분석(classification analysis)을 위한 새로운 특성 선택(feature selection) 방법을 제안한다. 이 방법은 i)높은 상관관계를 가지는 중복된 특성을 효과적으로 제거하는 전처리 단계와 ii)토너먼트(tournament) 전략을 사용하여 최적 특성 부분집합(optimal feature subset)을 탐색해 내는 단계로 구성되어 있다. 제안되는 방법을 실제 암진단에 사용되는 공개된 혈액 단백체 데이터에 적용하였으며 널리 사용되는 타 방법과 비교할 때 우수한 성능과 균형된 특이도와 민감도를 달성함을 실증하였다.

Prediction of Academic Performance of College Students with Bipolar Disorder using different Deep learning and Machine learning algorithms

  • Peerbasha, S.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.350-358
    • /
    • 2021
  • In modern years, the performance of the students is analysed with lot of difficulties, which is a very important problem in all the academic institutions. The main idea of this paper is to analyze and evaluate the academic performance of the college students with bipolar disorder by applying data mining classification algorithms using Jupiter Notebook, python tool. This tool has been generally used as a decision-making tool in terms of academic performance of the students. The various classifiers could be logistic regression, random forest classifier gini, random forest classifier entropy, decision tree classifier, K-Neighbours classifier, Ada Boost classifier, Extra Tree Classifier, GaussianNB, BernoulliNB are used. The results of such classification model deals with 13 measures like Accuracy, Precision, Recall, F1 Measure, Sensitivity, Specificity, R Squared, Mean Absolute Error, Mean Squared Error, Root Mean Squared Error, TPR, TNR, FPR and FNR. Therefore, conclusion could be reached that the Decision Tree Classifier is better than that of different algorithms.

머신러닝 기반 피싱 사이트 탐지 모델 (Machine Learning-based Phishing Website Detection Model)

  • 오수민;박민서
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.575-580
    • /
    • 2024
  • 소셜 미디어의 대중화로 지능화된 피싱 공격을 방어하기 위해 접근하고자 하는 사이트의 상태(정상/피싱)를 판별하는 것이 필요하다. 본 연구에서는 머신러닝 기반 분류 모델을 통해 사이트의 정상/피싱 여부를 예측하는 모델을 제안한다. 첫째, 'URL'에 대한 정보를 수집하여 수치 데이터로 변환한 후, 이상치를 제거한다. 둘째, 변수들 간의 상관관계 및 독립성을 파악하기 위해 VIF(Variance Inflation Factors)를 적용한다. 셋째, 머신러닝 기반 분류 모델을 활용하여 피싱 사이트 탐지 모델을 개발하고, 이를 통해 사이트의 상태를 예측한다. 분류 모델 중 랜덤 포레스트(Random Forest)의 성능이 가장 우수했으며, 테스트 데이터에서 정밀도(Precision) 93.74%, 재현율(Recall) 92.26%, 정확도(Accuracy) 93.14%를 보였다. 향후 이 연구는 다방면의 피싱 범죄 탐지에 적용할 수 있을 것으로 기대된다.

A Best Effort Classification Model For Sars-Cov-2 Carriers Using Random Forest

  • Mallick, Shrabani;Verma, Ashish Kumar;Kushwaha, Dharmender Singh
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.27-33
    • /
    • 2021
  • The whole world now is dealing with Coronavirus, and it has turned to be one of the most widespread and long-lived pandemics of our times. Reports reveal that the infectious disease has taken toll of the almost 80% of the world's population. Amidst a lot of research going on with regards to the prediction on growth and transmission through Symptomatic carriers of the virus, it can't be ignored that pre-symptomatic and asymptomatic carriers also play a crucial role in spreading the reach of the virus. Classification Algorithm has been widely used to classify different types of COVID-19 carriers ranging from simple feature-based classification to Convolutional Neural Networks (CNNs). This research paper aims to present a novel technique using a Random Forest Machine learning algorithm with hyper-parameter tuning to classify different types COVID-19-carriers such that these carriers can be accurately characterized and hence dealt timely to contain the spread of the virus. The main idea for selecting Random Forest is that it works on the powerful concept of "the wisdom of crowd" which produces ensemble prediction. The results are quite convincing and the model records an accuracy score of 99.72 %. The results have been compared with the same dataset being subjected to K-Nearest Neighbour, logistic regression, support vector machine (SVM), and Decision Tree algorithms where the accuracy score has been recorded as 78.58%, 70.11%, 70.385,99% respectively, thus establishing the concreteness and suitability of our approach.