• Title/Summary/Keyword: random forest classification

Search Result 308, Processing Time 0.029 seconds

Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees (가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식)

  • Hong, June-Hyeok;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

Predictive Analysis of Problematic Smartphone Use by Machine Learning Technique

  • Kim, Yu Jeong;Lee, Dong Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.213-219
    • /
    • 2020
  • In this paper, we propose a classification analysis method for diagnosing and predicting problematic smartphone use in order to provide policy data on problematic smartphone use, which is getting worse year after year. Attempts have been made to identify key variables that affect the study. For this purpose, the classification rates of Decision Tree, Random Forest, and Support Vector Machine among machine learning analysis methods, which are artificial intelligence methods, were compared. The data were from 25,465 people who responded to the '2018 Problematic Smartphone Use Survey' provided by the Korea Information Society Agency and analyzed using the R statistical package (ver. 3.6.2). As a result, the three classification techniques showed similar classification rates, and there was no problem of overfitting the model. The classification rate of the Support Vector Machine was the highest among the three classification methods, followed by Decision Tree and Random Forest. The top three variables affecting the classification rate among smartphone use types were Life Service type, Information Seeking type, and Leisure Activity Seeking type.

Prediction of Paroxysmal Atrial Fibrillation using Time-domain Analysis and Random Forest

  • Lee, Seung-Hwan;Kang, Dong-Won;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.69-79
    • /
    • 2018
  • The present study proposes an algorithm that can discriminate between normal subjects and paroxysmal atrial fibrillation (PAF) patients, which is conducted using electrocardiogram (ECG) without PAF events. For this, time-domain features and random forest classifier are used. Time-domain features are obtained from Poincare plot, Lorenz plot of ${\delta}RR$ interval, and morphology analysis. Afterward, three features are selected in total through feature selection. PAF patients and normal subjects are classified using random forest. The classification result showed that sensitivity and specificity were 81.82% and 95.24% respectively, the positive predictive value and negative predictive value were 96.43% and 76.92% respectively, and accuracy was 87.04%. The proposed algorithm had an advantage in terms of the computation requirement compared to existing algorithm, so it has suggested applicability in the more efficient prediction of PAF.

Comparison of Performance Factors for Automatic Classification of Records Utilizing Metadata (메타데이터를 활용한 기록물 자동분류 성능 요소 비교)

  • Young Bum Gim;Woo Kwon Chang
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.3
    • /
    • pp.99-118
    • /
    • 2023
  • The objective of this study is to identify performance factors in the automatic classification of records by utilizing metadata that contains the contextual information of records. For this study, we collected 97,064 records of original textual information from Korean central administrative agencies in 2022. Various classification algorithms, data selection methods, and feature extraction techniques are applied and compared with the intent to discern the optimal performance-inducing technique. The study results demonstrated that among classification algorithms, Random Forest displayed higher performance, and among feature extraction techniques, the TF method proved to be the most effective. The minimum data quantity of unit tasks had a minimal influence on performance, and the addition of features positively affected performance, while their removal had a discernible negative impact.

Machine learning in survival analysis (생존분석에서의 기계학습)

  • Baik, Jaiwook
    • Industry Promotion Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • We investigated various types of machine learning methods that can be applied to censored data. Exploratory data analysis reveals the distribution of each feature, relationships among features. Next, classification problem has been set up where the dependent variable is death_event while the rest of the features are independent variables. After applying various machine learning methods to the data, it has been found that just like many other reports from the artificial intelligence arena random forest performs better than logistic regression. But recently well performed artificial neural network and gradient boost do not perform as expected due to the lack of data. Finally Kaplan-Meier and Cox proportional hazard model have been employed to explore the relationship of the dependent variable (ti, δi) with the independent variables. Also random forest which is used in machine learning has been applied to the survival analysis with censored data.

Classification Model and Crime Occurrence City Forecasting Based on Random Forest Algorithm

  • KANG, Sea-Am;CHOI, Jeong-Hyun;KANG, Min-soo
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.21-25
    • /
    • 2022
  • Korea has relatively less crime than other countries. However, the crime rate is steadily increasing. Many people think the crime rate is decreasing, but the crime arrest rate has increased. The goal is to check the relationship between CCTV and the crime rate as a way to lower the crime rate, and to identify the correlation between areas without CCTV and areas without CCTV. If you see a crime that can happen at any time, I think you should use a random forest algorithm. We also plan to use machine learning random forest algorithms to reduce the risk of overfitting, reduce the required training time, and verify high-level accuracy. The goal is to identify the relationship between CCTV and crime occurrence by creating a crime prevention algorithm using machine learning random forest techniques. Assuming that no crime occurs without CCTV, it compares the crime rate between the areas where the most crimes occur and the areas where there are no crimes, and predicts areas where there are many crimes. The impact of CCTV on crime prevention and arrest can be interpreted as a comprehensive effect in part, and the purpose isto identify areas and frequency of frequent crimes by comparing the time and time without CCTV.

The Development of Major Tree Species Classification Model using Different Satellite Images and Machine Learning in Gwangneung Area (이종센서 위성영상과 머신 러닝을 활용한 광릉지역 주요 수종 분류 모델 개발)

  • Lim, Joongbin;Kim, Kyoung-Min;Kim, Myung-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1037-1052
    • /
    • 2019
  • We had developed in preceding study a classification model for the Korean pine and Larch with an accuracy of 98 percent using Hyperion and Sentinel-2 satellite images, texture information, and geometric information as the first step for tree species mapping in the inaccessible North Korea. Considering a share of major tree species in North Korea, the classification model needs to be expanded as it has a large share of Oak(29.5%), Pine (12.7%), Fir (8.2%), and as well as Larch (17.5%) and Korean pine (5.8%). In order to classify 5 major tree species, national forest type map of South Korea was used to build 11,039 training and 2,330 validation data. Sentinel-2 data was used to derive spectral information, and PlanetScope data was used to generate texture information. Geometric information was built from SRTM DEM data. As a machine learning algorithm, Random forest was used. As a result, the overall accuracy of classification was 80% with 0.80 kappa statistics. Based on the training data and the classification model constructed through this study, we will extend the application to Mt. Baekdu and North and South Goseong areas to confirm the applicability of tree species classification on the Korean Peninsula.

A measure of discrepancy based on margin of victory useful for the determination of random forest size (랜덤포레스트의 크기 결정에 유용한 승리표차에 기반한 불일치 측도)

  • Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.515-524
    • /
    • 2017
  • In this study, a measure of discrepancy based on MV (margin of victory) has been suggested that might be useful in determining the size of random forest for classification. Here MV is a scaled difference in the votes, at infinite random forest, of two most popular classes of current random forest. More specifically, max(-MV,0) is proposed as a reasonable measure of discrepancy by noting that negative MV values mean a discrepancy in two most popular classes between the current and infinite random forests. We propose an appropriate diagnostic statistic based on this measure that might be useful for the determination of random forest size, and then we derive its asymptotic distribution. Finally, a simulation study has been conducted to compare the performances, in finite samples, between this proposed statistic and other recently proposed diagnostic statistics.

Comparing Results of Classification Techniques Regarding Heart Disease Diagnosing

  • AL badr, Benan Abdullah;AL ghezzi, Raghad Suliman;AL moqhem, ALjohara Suliman;Eljack, Sarah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • Despite global medical advancements, many patients are misdiagnosed, and more people are dying as a result. We must now develop techniques that provide the most accurate diagnosis of heart disease based on recorded data. To help immediate and accurate diagnose of heart disease, several data mining methods are accustomed to anticipating the disease. A large amount of clinical information offered data mining strategies to uncover the hidden pattern. This paper presents, comparison between different classification techniques, we applied on the same dataset to see what is the best. In the end, we found that the Random Forest algorithm had the best results.