Acknowledgement
Supported by : 한국연구재단
References
- Banfield, R. E., Hall, L. O., Bowyer, K. W. and Kegelmeyer, W. P. (2007). A comparison of decision tree creation techniques. IEEE Transactions on Pattern Recognition and Machine Learning, 29, 173-180. https://doi.org/10.1109/TPAMI.2007.250609
- Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.
- Breiman, L. (2001). Random forest. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Caruana, R., Karampatziakis, N. and Yessenalina, A. (2008). An empirical evaluation of supervised learning in high dimensions. Proceedings of the 25th International Conference on Machine Learning, 96-103.
- Choi, S. H. and Kim, H. (2016). Tree size determination for classification ensemble. Journal of the Korean Data & Information Science Society, 27, 255-264. https://doi.org/10.7465/jkdi.2016.27.1.255
- Dudoit, S., Fridlyand, J. and Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97, 77-87. https://doi.org/10.1198/016214502753479248
- Hamza, M. and Larocque, D. (2005). An empirical comparison of ensemble methods based on classification trees. Journal of Statistical Computation and Simulation, 75, 629-643. https://doi.org/10.1080/00949650410001729472
- Hernandez-Lobato, D., Martinez-Munoz, G. and Suarez, A. (2011). Inference on prediction of ensembles of infinite size. Pattern Recognition, 44, 1426-1434. https://doi.org/10.1016/j.patcog.2010.12.021
- Hernandez-Lobato, D., Martinez-Munoz, G. and Suarez, A. (2013). How large should ensembles of classifiers be? Pattern Recognition, 46, 1323-1336. https://doi.org/10.1016/j.patcog.2012.10.021
- Park, C. (2016). A simple diagnostic statistic for determining the size of random forest. Journal of the Korean Data & Information Science Society, 27, 855-863. https://doi.org/10.7465/jkdi.2016.27.4.855
- Shapire, R., Freund, Y., Bartlett, P. and Lee, W. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26, 1651-1686. https://doi.org/10.1214/aos/1024691352