• Title/Summary/Keyword: random elements

Search Result 261, Processing Time 0.027 seconds

Identifying Sensitive Components and Analyzing Reliability Process to Output Characteristic for an EAFD Circuit System According to Changes of Internal Component Values (전자식 점화안전장치 회로 시스템 내부 소자 변화에 따른 민감 소자 확인 및 출력 특성에 대한 신뢰성 분석 프로세스)

  • Lim, Tae Heung;Byun, Gangil;Jang, Seung-gyo;Back, Seungjun;Son, Youngkap;Choo, Hosung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.697-703
    • /
    • 2018
  • In this paper, we analyzed the operation of the ignition circuit for electronic arm and fire device(EAFD), and investigated the sensitive elements of the circuit system. For reliability analysis, the EAFD ignition circuit was modeled using the PSpice simulation tool, and the output results of the circuit were examined by changing the tolerance of each circuit element. Monte Carlo simulation was used by maintaining the values of the observed sensitive elements at ${\pm}10%$ of the original values and adjusting the values of the other components according to a random distribution. The histogram results of the output peak currents and pulse widths were represented by Weibull and Burr type XII function fittings in three cases(element values are +10 %, 0 %, -10 % of original). For the output peak currents, mean values were 1.0028, 1.0034, and 1.0050, where the variance values were calculated as 0.0398, 0.0396, and 0.0290 using the Weibull function fitting, respectively. For pulse widths, the mean values of 0.9475, 0.9907, and 1.0293 with the variance values of 0.0260, 0.0251, and 0.0238 were obtained using the Burr Type XII function fittings.

A study on object recognition using morphological shape decomposition

  • Ahn, Chang-Sun;Eum, Kyoung-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.185-191
    • /
    • 1999
  • Mathematical morphology based on set theory has been applied to various areas in image processing. Pitas proposed a object recognition algorithm using Morphological Shape Decomposition(MSD), and a new representation scheme called Morphological Shape Representation(MSR). The Pitas's algorithm is a simple and adequate approach to recognize objects that are rotated 45 degree-units with respect to the model object. However, this recognition scheme fails in case of random rotation. This disadvantage may be compensated by defining small angle increments. However, this solution may greatly increase computational complexity because the smaller the step makes more number of rotations to be necessary. In this paper, we propose a new method for object recognition based on MSD. The first step of our method decomposes a binary shape into a union of simple binary shapes, and then a new tree structure is constructed which ran represent the relations of binary shapes in an object. finally, we obtain the feature informations invariant to the rotation, translation, and scaling from the tree and calculate matching scores using efficient matching measure. Because our method does not need to rotate the object to be tested, it could be more efficient than Pitas's one. MSR has an intricate structure so that it might be difficult to calculate matching scores even for a little complex object. But our tree has simpler structure than MSR, and easier to calculated the matchng score. We experimented 20 test images scaled, rotated, and translated versions of five kinds of automobile images. The simulation result using octagonal structure elements shows 95% correct recognition rate. The experimental results using approximated circular structure elements are examined. Also, the effect of noise on MSR scheme is considered.

  • PDF

Calculation of Reflectivity for W/Si Multilayer Mirror of Small d-Spacing (작은 두께주기를 갖는 W/Si 다층박막거울의 반사율 계산)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • Multilayer mirrors are optical elements that can replace single crystal optical elements such as silicon or germanium, and they have artificial diffraction plane of a thickness of several nanometers. We examined the first Bragg angle and the reduction of reflectivity by variation of layer thickness in a W/Si multilayer mirror of small d-spacing. A W/Si multilayer mirror for an incidence angle of $0.55^{\circ}$ and an energy of 17.5 keV was designed and showed a maximum reflectivity of 72.67%. When the thickness of tungsten or silicon layer was simultaneously changed, the first Bragg angle was shifted and the reflectivity was reduced. When there was a change in thickness for one layer of W/Si multilayer, no change in the reflectivity was showed but the unevenness of the envelope was observed. Reduction of reflectivity was also observed at random Gaussian thickness variations. It is possible to predict the tolerance of multilayer mirror by examining the reflectivity degradation according to the thickness change in the W/Si multilayer mirror of small d-spacing.

A Machine-Learning Based Approach for Extracting Logical Structure of a Styled Document

  • Kim, Tae-young;Kim, Suntae;Choi, Sangchul;Kim, Jeong-Ah;Choi, Jae-Young;Ko, Jong-Won;Lee, Jee-Huong;Cho, Youngwha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1043-1056
    • /
    • 2017
  • A styled document is a document that contains diverse decorating functions such as different font, colors, tables and images generally authored in a word processor (e.g., MS-WORD, Open Office). Compared to a plain-text document, a styled document enables a human to easily recognize a logical structure such as section, subsection and contents of a document. However, it is difficult for a computer to recognize the structure if a writer does not explicitly specify a type of an element by using the styling functions of a word processor. It is one of the obstacles to enhance document version management systems because they currently manage the document with a file as a unit, not the document elements as a management unit. This paper proposes a machine learning based approach to analyzing the logical structure of a styled document composing of sections, subsections and contents. We first suggest a feature vector for characterizing document elements from a styled document, composing of eight features such as font size, indentation and period, each of which is a frequently discovered item in a styled document. Then, we trained machine learning classifiers such as Random Forest and Support Vector Machine using the suggested feature vector. The trained classifiers are used to automatically identify logical structure of a styled document. Our experiment obtained 92.78% of precision and 94.02% of recall for analyzing the logical structure of 50 styled documents.

Prediction and Calibration of Transverse Mechanical Properties of Unidirectional Composites with Random Fiber Arrangement Considering Interphase Effect (계면 특성을 고려한 무작위 섬유배치를 갖는 단방향 복합재료의 가로방향 기계적 물성 예측 및 보정)

  • Park, Shin-Moo;Kim, Do-Won;Jeong, Gyu;Lim, Jae Hyuk;Kim, Sun-Won
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.270-278
    • /
    • 2019
  • In this study, the transverse mechanical properties of the unidirectional fiber reinforced composite modeled with fiber, matrix, and interphase is predicted with the representative volume elements and is calibrated by adjusting the properties and thickness of the interphase by referring to the test results. While the conventional representative volume elements modeled with fiber and matrix shows high predictive accuracy for the longitudinal mechanical properties, but it shows some deviations in the transverse mechanical properties. In order to compensate such gaps, the interphase region is employed, and its mechanical properties are adjusted to improve the prediction accuracy according to various elastic modulus, thickness, and strength parameters. As a result, the deviation of the transverse elastic modulus and strength is reduced significantly similar to the test results of the unidirectional composites with the accuracy of the longitudinal mechanical properties preserved.

A Study on the Prediction of Storage Life of Rolling Element Bearings for the Single-use Turbo Engine (일회성 터보엔진용 구름 베어링의 저장 수명 예측에 관한 연구)

  • Sun Je Kim;Dong Min Kim;Soon Ho Hong;Seong Ki Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.43-52
    • /
    • 2022
  • Operational reliability of the single-use turbo engine for guided weapons must be guaranteed even after long-term storage. Rolling element bearings have a great influence on the operational reliability of the turbo engine, however changes in micro dimensions of bearings by an oxide layers on rolling elements and raceways may cause failures after long-term storage. In this study, changes in dimensions of bearings were measured and roughness of rolling elements was used for estimating the storage life. Storage life estimation was performed via two kinds of methods, Weibayes method and random sample generation method. The results of two methods were compared and their characteristics were analyzed. This study will contribute to establish an efficient maintenance schedule for the single-use turbo engine.

Ashbery's Aesthetics of Difficulty: Information Theory and Hypertext

  • Ryoo, Gi Taek
    • Journal of English Language & Literature
    • /
    • v.58 no.6
    • /
    • pp.1001-1021
    • /
    • 2012
  • This paper is concerned with John Ashbery's poetics of difficulty, questioning in particular the nature of communication in his difficult poems. Ashbery has an idea of poetry as 'information' to be transmitted to the reader. Meaning, however, is to be created by a series of selections among equally probable choices. Ashbery's poetry has been characterized by resistance to the interpretive system of meaning. But the resistance itself, as I will argue, can be an effective medium of communication as the communicated message is not simply transmitted but 'selected' and thus created by the reader. In Ashbery's poetry, disruptive 'noise' elements can be processed as constructive information. What is normally considered a hindrance or noise can be reversed and added to the information. In Ashbery's poems, random ambiguities or noises can be effectively integrated into the final structure of meaning. Such a stochastic sense of information transfer has been embodied in Ashbery's idea of creating a network of verbal elements in his poetry, analogous to the interconnecting web of hypertext, the most dynamic medium 'information technology' has brought to us. John Ashbery, whose poems are simultaneously incomprehensible and intelligent, employs ambiguities or noise in his poetry, with an attempt to reach through linear language to express nonlinear realities. It is therefore my intention to examine Ashbery's poetics of difficulty, from a perspective of communication transmission, using the theories of information technology and the principles of hypertext theory. Ashbery's poetry raises precisely the problem confronted in the era of communication and information technology. The paper will also show how his aesthetics of difficulty reflects the culture of our uncertain times with overflowing information. With his difficult enigmatic poems, Ashbery was able to move ahead of the technological advances of his time to propose a new way of perceiving the world and life.

A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan Generation from Building Point Clouds

  • Kim, Seongyong;Yajima, Yosuke;Park, Jisoo;Chen, Jingdao;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.792-799
    • /
    • 2022
  • Building Information Modeling (BIM) technology is a key component of modern construction engineering and project management workflows. As-is BIM models that represent the spatial reality of a project site can offer crucial information to stakeholders for construction progress monitoring, error checking, and building maintenance purposes. Geometric methods for automatically converting raw scan data into BIM models (Scan-to-BIM) often fail to make use of higher-level semantic information in the data. Whereas, semantic segmentation methods only output labels at the point level without creating object level models that is necessary for BIM. To address these issues, this research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds. The input point clouds are first pre-processed by normalizing the coordinate system and removing outliers. Then, a semantic segmentation network based on PointNet++ is used to label each point as ceiling, floor, wall, door, stair, and clutter. The clutter points are removed whereas the wall, door, and stair points are used for 2D floorplan generation. A region-growing segmentation algorithm paired with geometric reasoning rules is applied to group the points together into individual building elements. Finally, a 2-fold Random Sample Consensus (RANSAC) algorithm is applied to parameterize the building elements into 2D lines which are used to create the output floorplan. The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.

  • PDF

Spatial Gap-filling of GK-2A/AMI Hourly AOD Products Using Meteorological Data and Machine Learning (기상모델자료와 기계학습을 이용한 GK-2A/AMI Hourly AOD 산출물의 결측화소 복원)

  • Youn, Youjeong;Kang, Jonggu;Kim, Geunah;Park, Ganghyun;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.953-966
    • /
    • 2022
  • Since aerosols adversely affect human health, such as deteriorating air quality, quantitative observation of the distribution and characteristics of aerosols is essential. Recently, satellite-based Aerosol Optical Depth (AOD) data is used in various studies as periodic and quantitative information acquisition means on the global scale, but optical sensor-based satellite AOD images are missing in some areas with cloud conditions. In this study, we produced gap-free GeoKompsat 2A (GK-2A) Advanced Meteorological Imager (AMI) AOD hourly images after generating a Random Forest based gap-filling model using grid meteorological and geographic elements as input variables. The accuracy of the model is Mean Bias Error (MBE) of -0.002 and Root Mean Square Error (RMSE) of 0.145, which is higher than the target accuracy of the original data and considering that the target object is an atmospheric variable with Correlation Coefficient (CC) of 0.714, it is a model with sufficient explanatory power. The high temporal resolution of geostationary satellites is suitable for diurnal variation observation and is an important model for other research such as input for atmospheric correction, estimation of ground PM, analysis of small fires or pollutants.

The Effect of Implicit Motor Sequence Learning Through Perceptual-Motor Task in Patients with Subacute Stroke (아급성기 뇌졸중 환자에서 지각-운동 과제를 통한 내잠 학습의 효과)

  • Lee, Mi-Young;Park, Rae-Joon;Nam, Ki-Seok
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • Purpose: Implicit motor learning is the capacity to acquire skill through physical practice without conscious awareness of what elements of performance improved. This study investigated whether subacute stroke patients can implicitly learn a perceptual-motor task. Methods: We recruited 12 patients with subacute stroke and 12 age-matched controls. All participants performed a perceptual-motor task that involved pressing a button corresponding with colored circles (blue, green, yellow, red) on a computer screen. The task consists of 7 blocks composed of 10 repetitions for a repeating 12-element sequence (total 120 responses). Results: Both groups demonstrated significant improvement in acquisition performance. Reaction times deceased in both groups at similar rate within the sequential block trials (2-5 blocks), and reaction times increased at a similar rate when the task paradigm was transferred from the sequential block trial to the random block trial (5-6-7 blocks). Conclusion: The results of this study suggest that patients with sub-actue stroke can implicitly learn a perceptual motor skill. Although explicit instructions should be used to focus the learner's attention rather than provide information about the task, the application of implicit motor learning strategies in the rehabilitation setting may be beneficial.

  • PDF