• Title/Summary/Keyword: random data analysis

Search Result 1,741, Processing Time 0.034 seconds

Image analysis of Specialized Vocational high school recognized by middle school student (중학생이 인식하는 특성화 고등학교 이미지 분석)

  • Kim, Yeong-Hun;Kim, Tae-Hoon
    • 대한공업교육학회지
    • /
    • v.38 no.2
    • /
    • pp.114-135
    • /
    • 2013
  • The purpose of this study is to provide base line data for right concept and identity establishment of Specialized Vocational high school, to identify recognition of Specialized Vocational high school, to analyze image of Specialized Vocational high school recognized by middle school student. The population was all middle school third year students in Korea. Using random sampling technique, 50 classes of 61 schools were sampled for the study. A survey questionnaire used Semantic Differential(SD) suggested by Osgood(1957). SD consisted of a number of adjective pairs, finally, this study used 11 adjective pairs to have validity. 1,198 out of 1,441 questionnaire were returned (a return rate of 83.14%), among which 935 were used for the analysis after data cleaning. An alpha level of 0.05 was established a prior for determining significance. All data analysis was accomplished using the SPSS 20.0 Win. Based on the finding of the study, the major results of the this study were as follows : 1. Higher average is female students' image of Specialized Vocational high school than male students' that, but, The difference between the two samples was not statistically significant. 2. It was only 20% that receive career education of Vocational high school. It is necessary to accomplish and expand career education of Specialized Vocational high school for proper career education from middle school, to realize career exploration and decide one's career path based on one's specialty. 3. They have positive images who hope for going on to the Specialized Vocational high school of education than the others. 4. It is necessary to accomplish and expand career education of Specialized Vocational high school for proper career education from middle school, to realize career exploration and decide one's career path based on one's specialty, because the result was statistically significant. 5. They have the more possitive image of Specialized Vocational high school, the more know it, totally.

The Relationship Between Social Security Network and Security Life Satisfaction in Community Residents: Scale Development and Application of Social Security Network (사회안전망과 지역사회주민의 안전생활만족의 관계: 사회안전망 척도개발과 적용)

  • Kim, Chan-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.6
    • /
    • pp.108-118
    • /
    • 2014
  • The purpose of this study is to develop a relationship of measuring method for the social security network and verify its validity and reliability and apply it to investigate the due to security life satisfaction. This study is based by setting general residents of Seoul in 2013 and using the stratified cluster random sampling method to analyze a total amount of 203 examples. The measuring methods for the social security network was developed through document research, conceptual definition and drafting the survey, experts' conference, preliminary inspection and original examination, verification of the validity and reliability of the survey. An experts' conference took pace to verify the validity of the survey, and 6 factors were extracted through exploratory factor analysis crime prevention design, street CCTV facilities, volunteer neighborhood patrol, local government security education, police public peace service, private security service. The conclusion are the following. Collected data was analyzed based on the aim of this study using SPSSWIN 18.0, and practice frequency analysis, F test, factor analysis, reliability analysis, correlation analysis, multiple regression analysis. First, the validity of the social security network measurement is very high. Thus, the factors constituting the social security network were found to be crime prevention design, street CCTV facilities, volunteer neighborhood patrol, local government security education, police public peace services, and private security services, and the crime prevention design factor was found to be most explanatory. Second, the reliability of the social security network measurement is very high. Thus, the correlation between the questions and the sector, the questions and the social security net was very high, and the internal consistency showed a Cronbach's${\alpha}$ value of over 0.865. Third, the establishment of a social security network had the biggest effect on people in their forties. Thus, when the crime prevention design, street CCTV facilities, local government security education, police public peace services are systematically established, the social anxiety of citizens was reduced.

Performance Evaluation of Siemens CTI ECAT EXACT 47 Scanner Using NEMA NU2-2001 (NEMA NU2-2001을 이용한 Siemens CTI ECAT EXACT 47 스캐너의 표준 성능 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • Purpose: NEMA NU2-2001 was proposed as a new standard for performance evaluation of whole body PET scanners. in this study, system performance of Siemens CTI ECAT EXACT 47 PET scanner including spatial resolution, sensitivity, scatter fraction, and count rate performance in 2D and 3D mode was evaluated using this new standard method. Methods: ECAT EXACT 47 is a BGO crystal based PET scanner and covers an axial field of view (FOV) of 16.2 cm. Retractable septa allow 2D and 3D data acquisition. All the PET data were acquired according to the NEMA NU2-2001 protocols (coincidence window: 12 ns, energy window: $250{\sim}650$ keV). For the spatial resolution measurement, F-18 point source was placed at the center of the axial FOV((a) x=0, and y=1, (b)x=0, and y=10, (c)x=70, and y=0cm) and a position one fourth of the axial FOV from the center ((a) x=0, and y=1, (b)x=0, and y=10, (c)x=10, and y=0cm). In this case, x and y are transaxial horizontal and vertical, and z is the scanner's axial direction. Images were reconstructed using FBP with ramp filter without any post processing. To measure the system sensitivity, NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves were scanned at the center of transaxial FOV and 10 cm offset from the center. Attenuation free values of sensitivity wire estimated by extrapolating data to the zero wall thickness. NEMA scatter phantom with length of 70 cm was filled with F-18 or C-11solution (2D: 2,900 MBq, 3D: 407 MBq), and coincidence count rates wire measured for 7 half-lives to obtain noise equivalent count rate (MECR) and scatter fraction. We confirmed that dead time loss of the last flame were below 1%. Scatter fraction was estimated by averaging the true to background (staffer+random) ratios of last 3 frames in which the fractions of random rate art negligibly small. Results: Axial and transverse resolutions at 1cm offset from the center were 0.62 and 0.66 cm (FBP in 2D and 3D), and 0.67 and 0.69 cm (FBP in 2D and 3D). Axial, transverse radial, and transverse tangential resolutions at 10cm offset from the center were 0.72 and 0.68 cm (FBP in 2D and 3D), 0.63 and 0.66 cm (FBP in 2D and 3D), and 0.72 and 0.66 cm (FBP in 2D and 3D). Sensitivity values were 708.6 (2D), 2931.3 (3D) counts/sec/MBq at the center and 728.7 (2D, 3398.2 (3D) counts/sec/MBq at 10 cm offset from the center. Scatter fractions were 0.19 (2D) and 0.49 (3D). Peak true count rate and NECR were 64.0 kcps at 40.1 kBq/mL and 49.6 kcps at 40.1 kBq/mL in 2D and 53.7 kcps at 4.76 kBq/mL and 26.4 kcps at 4.47 kBq/mL in 3D. Conclusion: Information about the performance of CTI ECAT EXACT 47 PET scanner reported in this study will be useful for the quantitative analysis of data and determination of optimal image acquisition protocols using this widely used scanner for clinical and research purposes.

The Effect of Structured Information on the Sleep Amount of Patients Undergoing Open Heart Surgery (계획된 간호 정보가 수면량에 미치는 영향에 관한 연구 -개심술 환자를 중심으로-)

  • 이소우
    • Journal of Korean Academy of Nursing
    • /
    • v.12 no.2
    • /
    • pp.1-26
    • /
    • 1982
  • The main purpose of this study was to test the effect of the structured information on the sleep amount of the patients undergoing open heart surgery. This study has specifically addressed to the Following two basic research questions: (1) Would the structed in formation influence in the reduction of sleep disturbance related to anxiety and Physical stress before and after the operation? and (2) that would be the effects of the structured information on the level of preoperative state anxiety, the hormonal change, and the degree of behavioral change in the patients undergoing an open heart surgery? A Quasi-experimental research was designed to answer these questions with one experimental group and one control group. Subjects in both groups were matched as closely as possible to avoid the effect of the differences inherent to the group characteristics, Baseline data were also. collected on both groups for 7 days prior to the experiment and found that subjects in both groups had comparable sleep patterns, trait anxiety, hormonal levels and behavioral level. A structured information as an experimental input was given to the subjects in the experimental group only. Data were collected and compared between the experimental group and the control group on the sleep amount of the consecutive pre and post operative days, on preoperative state anxiety level, and on hormonal and behavioral changes. To test the effectiveness of the structured information, two main hypotheses and three sub-hypotheses were formulated as follows; Main hypothesis 1: Experimental group which received structured information will have more sleep amount than control group without structured information in the night before the open heart surgery. Main hypothesis 2: Experimental group with structured information will have more sleep, amount than control group without structured information during the week following the open heart surgery Sub-hypothesis 1: Experimental group with structured information will be lower in the level of State anxiety than control group without structured information in the night before the open heart surgery. Sub-hypothesis 2 : Experimental group with structured information will have lower hormonal level than control group without stuctured information on the 5th day after the open heart surgery Sub-hypothesis 3: Experimental group with structured information will be lower in the behavioral change level than control group without structured information during the week after the open heart surgery. The research was conducted in a national university hospital in Seoul, Korea. The 53 Subjects who participated in the study were systematically divided into experimental group and control group which was decided by random sampling method. Among 53 subjects, 26 were placed in the experimental group and 27 in the control group. Instruments; (1) Structed information: Structured information as an independent variable was constructed by the researcher on the basis of Roy's adaptation model consisting of physiologic needs, self-concept, role function and interdependence needs as related to the sleep and of operational procedures. (2) Sleep amount measure: Sleep amount as main dependent variable was measured by trained nurses through observation on the basis of the established criteria, such as closed or open eyes, regular or irregular respiration, body movement, posture, responses to the light and question, facial expressions and self report after sleep. (3) State anxiety measure: State Anxiety as a sub-dependent variable was measured by Spi-elberger's STAI Anxiety scale, (4) Hormornal change measure: Hormone as a sub-dependent variable was measured by the cortisol level in plasma. (5) Behavior change measure: Behavior as a sub-dependent variable was measured by the Behavior and Mood Rating Scale by Wyatt. The data were collected over a period of four months, from June to October 1981, after the pretest period of two months. For the analysis of the data and test for the hypotheses, the t-test with mean differences and analysis of covariance was used. The result of the test for instruments show as follows: (1) STAI measurement for trait and state anxiety as analyzed by Cronbachs alpha coefficient analysis for item analysis and reliability showed the reliability level at r= .90 r= .91 respectively. (2) Behavior and Mood Rating Scale measurement was analyzed by means of Principal Component Analysis technique. Seven factors retained were anger, anxiety, hyperactivity, depression, bizarre behavior, suspicious behavior and emotional withdrawal. Cumulative percentage of each factor was 71.3%. The result of the test for hypotheses show as follows; (1) Main hypothesis, was not supported. The experimental group has 282 minutes of sleep as compared to the 255 minutes of sleep by the control group. Thus the sleep amount was higher in experimental group than in control group, however, the difference was not statistically significant at .05 level. (2) Main hypothesis 2 was not supported. The mean sleep amount of the experimental group and control group were 297 minutes and 278 minutes respectively Therefore, the experimental group had more sleep amount as compared to the control group, however, the difference was not statistically significant at .05 level. Thus, the main hypothesis 2 was not supported. (3) Sub-hypothesis 1 was not supported. The mean state anxiety of the experimental group and control group were 42.3, 43.9 in scores. Thus, the experimental group had slightly lower state anxiety level than control group, howe-ver, the difference was not statistically significant at .05 level. (4) Sub-hypothesis 2 was not supported. . The mean hormonal level of the experimental group and control group were 338 ㎍ and 440 ㎍ respectively. Thus, the experimental group showed decreased hormonal level than the control group, however, the difference was not statistically significant at .05 level. (5) Sub-hypothesis 3 was supported. The mean behavioral level of the experimental group and control group were 29.60 and 32.00 respectively in score. Thus, the experimental group showed lower behavioral change level than the control group. The difference was statistically significant at .05 level. In summary, the structured information did not influence the sleep amount, state anxiety or hormonal level of the subjects undergoing an open heart surgery at a statistically significant level, however, it showed a definite trends in their relationships, not least to mention its significant effect shown on behavioral change level. It can further be speculated that a great degree of individual differences in the variables such as sleep amount, state anxiety and fluctuation in hormonal level may partly be responsible for the statistical insensitivity to the experimentation.

  • PDF

Development of Evaluation Method for Jointed Concrete Pavement with FWD and Finite Element Analysis (FWD와 유한요소해석을 이용한 줄눈콘크리트포장 평가법 개발)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Choi, Seong-Yong
    • International Journal of Highway Engineering
    • /
    • v.1 no.1
    • /
    • pp.107-119
    • /
    • 1999
  • The joints in the jointed concrete pavement provide a control against transverse or longitudinal cracking at slab, which may be caused by temperature or moisture variation during or after hydration. Without control of cracking, random cracks cause more serious distresses and result in structural or functional failure of pavement system. However, joints nay cause distresses due to its inherent weakness in structural integrity. Thus, the evaluation at joint is very important. and the joint-related distresses should be evaluated reasonably for economic rehabilitation. The purpose of this paper was to develop an evaluation system at joints of jointed concrete pavement using finite element analysis program, ILLI-SLAB, and nondestructive testing device. FWD. To develop an evaluation system for JCP, a sensitivity analysis was performed using ILLI-SLAB program with a selected variables which might affect fairly to on the performance of transverse joints. The most significant variables were selected from precise analysis. An evaluation charts were made for jointed concrete pavement by adopting the field FWD data. It was concluded that the variables which most significantly affect to pavement deflections are the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G), and limiting criteria on the performance of joints at JCP are 300pci. 500,000 lb/in. respectively. Using these variables and FWD test, a charts of load transfer ratio versus surface deflection at joints were made in order to evaluate the performance of JCP. Practically, Chungbu highway was evaluated by these evaluation charts and FWD field data for jointed concrete pavement. For Chungbu highway, only one joint showed smaller value than limiting criterion of the modulus of dowel/concrete interaction(G). The rest joints showed larger values than limiting criteria of the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G).

  • PDF

Relation of Social Security Network, Community Unity and Local Government Trust (지역사회 사회안전망구축과 지역사회결속 및 지방자치단체 신뢰의 관계)

  • Kim, Yeong-Nam;Kim, Chan-Sun
    • Korean Security Journal
    • /
    • no.42
    • /
    • pp.7-36
    • /
    • 2015
  • This study aims at analyzing difference of social Security network, Community unity and local government trust according to socio-demographical features, exploring the relation of social Security network, Community unity and local government trust according to socio-demographical features, presenting results between each variable as a model and verifying the property of mutual ones. This study sampled general citizens in Gwangju for about 15 days Aug. 15 through Aug. 30, 2014, distributed total 450 copies using cluster random sampling, gathered 438 persons, 412 persons of whom were used for analysis. This study verified the validity and credibility of the questionnaire through an experts' meeting, preliminary test, factor analysis and credibility analysis. The credibility of questionnaire was ${\alpha}=.809{\sim}{\alpha}=.890$. The inout data were analyzed by study purpose using SPSSWIN 18.0, as statistical techniques, factor analysis, credibility analysis, correlation analysis, independent sample t verification, ANOVA, multi-regression analysis, path analysis etc. were used. the findings obtained through the above study methods are as follows. First, building a social Security network has an effect on Community institution. That is, the more activated a, the higher awareness on institution. the more activated street CCTV facilities, anti-crime design, local government Security education, the higher the stability. Second, building a social Security network has an effect on trust of local government. That is, the activated local autonomous anti-crime activity, anti-crime design. local government's Security education, police public oder service, the more increased trust of policy, service management, busines performance. Third, Community unity has an effect on trust of local government. That is, the better Community institution is achieved, the higher trust of policy. Also the stabler Community institution, the higher trust of business performance. Fourth, building a social Security network has a direct or indirect effect on Community unity and local government trust. That is, social Security network has a direct effect on trust of local government, but it has a higher effect through Community unity of parameter. Such results showed that Community unity in Gwangju Region is an important factor, which means it is an important variable mediating building a social Security network and trust of local government. To win trust of local residents, we need to prepare for various cultural events and active communication space and build a social Security network for uniting them.

  • PDF

Regeneration of a defective Railroad Surface for defect detection with Deep Convolution Neural Networks (Deep Convolution Neural Networks 이용하여 결함 검출을 위한 결함이 있는 철도선로표면 디지털영상 재 생성)

  • Kim, Hyeonho;Han, Seokmin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.23-31
    • /
    • 2020
  • This study was carried out to generate various images of railroad surfaces with random defects as training data to be better at the detection of defects. Defects on the surface of railroads are caused by various factors such as friction between track binding devices and adjacent tracks and can cause accidents such as broken rails, so railroad maintenance for defects is necessary. Therefore, various researches on defect detection and inspection using image processing or machine learning on railway surface images have been conducted to automate railroad inspection and to reduce railroad maintenance costs. In general, the performance of the image processing analysis method and machine learning technology is affected by the quantity and quality of data. For this reason, some researches require specific devices or vehicles to acquire images of the track surface at regular intervals to obtain a database of various railway surface images. On the contrary, in this study, in order to reduce and improve the operating cost of image acquisition, we constructed the 'Defective Railroad Surface Regeneration Model' by applying the methods presented in the related studies of the Generative Adversarial Network (GAN). Thus, we aimed to detect defects on railroad surface even without a dedicated database. This constructed model is designed to learn to generate the railroad surface combining the different railroad surface textures and the original surface, considering the ground truth of the railroad defects. The generated images of the railroad surface were used as training data in defect detection network, which is based on Fully Convolutional Network (FCN). To validate its performance, we clustered and divided the railroad data into three subsets, one subset as original railroad texture images and the remaining two subsets as another railroad surface texture images. In the first experiment, we used only original texture images for training sets in the defect detection model. And in the second experiment, we trained the generated images that were generated by combining the original images with a few railroad textures of the other images. Each defect detection model was evaluated in terms of 'intersection of union(IoU)' and F1-score measures with ground truths. As a result, the scores increased by about 10~15% when the generated images were used, compared to the case that only the original images were used. This proves that it is possible to detect defects by using the existing data and a few different texture images, even for the railroad surface images in which dedicated training database is not constructed.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.

A Meta-analysis of Ambient Air Pollution in Relation to Daily Mortality in Seoul, $1991\sim1995$ (메타분석 방법을 적용한 서울시 대기오염과 조기사망의 상관성 연구 (1991년$\sim$1995년))

  • Dockery, Douglas W.;Kim, Chun-Bae;Jee, Sun-Ha;Chung, Yong;Lee, Jong-Tae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • Objectives: To reexamine the association between air pollution and daily mortality in Seoul, Korea using a method of meta-analysis with the data filed for 1991 through 1995. Methods: A separate Poisson regression analysis on each district within the metropolitan area of Seoul was conducted to regress daily death counts on levels of each ambient air pollutant, such as total suspended particulates (TSP), sulfur dioxide $(SO_2)$, and ozone $(O_3)$, controlling for variability in the weather condition. We calculated a weighted mean as a meta-analysis summary of the estimates and its standard error. Results: We found that the p value from each pollutant model to test the homogeneity assumption was small (p<0.01) because of the large disparity among district-specific estimates. Therefore, all results reported here were estimated from the random effect model. Using the weighted mean that we calculated, the mortality at a $100{\mu}g/m^3$ increment in a 3-day moving average of TSP levels was 1.034 (95% Cl 1.009-1.059). The mortality was estimated to increase 6% (95% Cl 3-10%) and 3% (95% Cl 0-6%) with each 50 ppb increase for 9-day moving average of SO2 and 1-hr maximum O3, respectively. Conclusions: Like most of air pollution epidemiologic studies, this meta-analysis cannot avoid fleeing from measurement misclassification since no personal measurement was taken. However, we can expect that a measurement bias be reduced in a district-specific estimate since a monitoring station is hefter representative cf air quality of the matched district. The similar results to those from the previous studios indicated existence of health effect of air pollution at current levels in many industrialized countries, including Korea.

  • PDF

Development of Decision Tree Software and Protein Profiling using Surface Enhanced laser Desorption/lonization - Time of Flight - Mass Spectrometry (SELDI-TOF-MS) in Papillary Thyroid Cancer (의사결정트리 프로그램 개발 및 갑상선유두암에서 질량분석법을 이용한 단백질 패턴 분석)

  • Yoon, Joon-Kee;Lee, Jun;An, Young-Sil;Park, Bok-Nam;Yoon, Seok-Nam
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.299-308
    • /
    • 2007
  • Purpose: The aim of this study was to develop a bioinformatics software and to test it in serum samples of papillary thyroid cancer using mass spectrometry (SELDI-TOF-MS). Materials and Methods: Development of 'Protein analysis' software performing decision tree analysis was done by customizing C4.5. Sixty-one serum samples from 27 papillary thyroid cancer, 17 autoimmune thyroiditis, 17 controls were applied to 2 types of protein chips, CM10 (weak cation exchange) and IMAC3 (metal binding - Cu). Mass spectrometry was performed to reveal the protein expression profiles. Decision trees were generated using 'Protein analysis' software, and automatically detected biomarker candidates. Validation analysis was performed for CM10 chip by random sampling. Results: Decision tree software, which can perform training and validation from profiling data, was developed. For CM10 and IMAC3 chips, 23 of 113 and 8 of 41 protein peaks were significantly different among 3 groups (p<0.05), respectively. Decision tree correctly classified 3 groups with an error rate of 3.3% for CM10 and 2.0% for IMAC3, and 4 and 7 biomarker candidates were detected respectively. In 2 group comparisons, all cancer samples were correctly discriminated from non-cancer samples (error rate = 0%) for CM10 by single node and for IMAC3 by multiple nodes. Validation results from 5 test sets revealed SELDI-TOF-MS and decision tree correctly differentiated cancers from non-cancers (54/55, 98%), while predictability was moderate in 3 group classification (36/55, 65%). Conclusion: Our in-house software was able to successfully build decision trees and detect biomarker candidates, therefore it could be useful for biomarker discovery and clinical follow up of papillary thyroid cancer.