• Title/Summary/Keyword: random copolymer

Search Result 73, Processing Time 0.025 seconds

Spinodal Phase Separation and Isothermal Crystallization Behavior in Blends of VDF/TrFE(75/25) Copolymer and Poly(1,4-butylene adipate) (I) -Spinodal Phase Separation Behavior-

  • Kim, Kap Jin;Kyu, Thein
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.188-194
    • /
    • 2003
  • Phase behavior and spinodal phase separation kinetics in binary blends of a random copolymer of vinylidene fluoride and trifluoroethylene (75/25) [P(VDF/TrFE)] and poly(l,4-butylene adipate) (PBA) have been investigated by means of optical microscopic observation and time-resolved light scattering. The blends exhibited a typical lower critical solution temperature (LCST)∼${34}^{\circ}C$ above the melting temperature of the P(VDF/TrFE) crystals over the entire blend composition range. P(VDF/TrFE) and PBA were totally miscible in the temperature gap between the melting point of P(VDF/TrFE) and the LCST. Temperature jump experiments of the 3/7 P(VDF/TrFE)/PBA blend were carried out on a light-scattering apparatus from a single-phase melt state (${180}^{\circ}C$) to a two-phase region (205∼${215}^{\circ}C$). Since the late stage of spinodal decomposition (SD) is prevalent in the 3/7 blend, SD was analyzed using a power law scheme. Self-similarity was preserved well in the late stage of SD in the 3/7 blend.

Stable Blue Electroluminescence from Fluorine-containing Polymers (불소 함유된 고분자를 이용한 안정한 청색 발광 유기 EL)

  • Kang In-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.568-573
    • /
    • 2006
  • We have synthesized new blue light emitting random copolymers, poly(9,9'-n-dioctylfluorene-co-perfluorobenzene-1,4-diyl)s (PFFBs), via Ni(0)-mediated coupling reactions. The weight-average molecular weights ($M_w$) of the PFFB copolymers ranged from 9,000 to 15,000. The PFFB copolymers dissolved in common organic solvents such as THF and toluene. The PL emission peaks of the PFFB copolymers were at around 420, 440, and 470 nm. EL devices were fabricated in ITO/PEDOT/polymer/Ca/Al configurations using these polymers. These EL devices were found to exhibit pure blue emission with approximate CIE coordinates of (0.15, 0.11) at $100cd/m^2$. The blue emissions of these devices might be due to the restriction of the polymer chains to aggregation by introducing of the highly electronegative fluorine moieties. The maximum brightnesses of the PFFB copolymer devices ranged from 140 to $3600cd/m^2$ with maximum efficiencies from 0.2 to 0.6 cd/A. The enhanced efficiency of the PFFB (8/2) copolymer device results from the inhibition of excimer formation by the introduction of the electronegative fluorine moieties into the copolymers.

Novel Polyurethane Binder for Propellant based on Hydroxyl-terminated Copolyether (폴리에테르 공중합체 디올(HTPE)을 사용한 새로운 추진제용 폴리우레탄 바인더)

  • Song Jong-Kwon;Pan Xiao;Lee Bum-Jae;Jeon Jun-Pyo;Hwang Gab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.417-421
    • /
    • 2005
  • Novel two synthetic technics using cationic ring-opening copolymerization of tetrahydrofuran (THF) and ethylene oxide (EO), or just polymerized EO on Poly-THF, could lead to random hydroxyl-terminated poly(EO-ran-THF) or tri-block PEG-PTHF-PEC, respectively. These reactions were carried out using $BF_3O(C_2H_5)_2$ as catalyst, 1,4-butanediol or PTHF as diol initiator. Copolymer structures were controlled by monomer feed ratio, or initial PTHF and EO monomer added amount. The molecular weight of polymer was merely dependant on the ratio of [monomer]/[diol], but not on catalyst. Well-defined random and block hydroxyl-terminated copolyether was found to be as the prepolymer for the propellant binder from the experiment to polyurethane with them.

  • PDF

Advances in Materials for Proton Exchange Membrane based Fuel Cells

  • McGrath James E.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.58-59
    • /
    • 2006
  • Less than a decade ago, most alternate membrane materials for fuel cells relied upon a post-sulfonation process to generate ionic groups capable of transporting protons from the anode to the cathode. These random post sulfonations showed some promise, but in general they produced materials that were not sufficiently stable or protonically conductive at ion exchange capacities where aqueous swelling could be restricted. Our group began to synthesize disulfonated monomers that could be used to incorporate into random copolymer proton exchange membranes. The expected limitation was that the aromatic polymers might not be stable enough to withstand fuel cell conditions. However, this was mostly based upon an accelerated test known was the Fenton's Reagent Test, which did not seem to this author as being a reliable predictor of performance. A much better approach has been to evaluate the open circuit voltage (OCV) for alternate membranes, as well as the benchmark perfluorosulfonic acid systems. When this is done, the aromatic ionomers of this study, primarily based upon disulfonated polyarylene ether sulfones, show up quite well. Real time 3000 hours DMFC results have also been generated. Obtaining conductive materials at low humidities is another major issue where alternate membranes have not been particularly successful. In order to address this problem, multiblock copolymers with relatively high water diffusion coefficients have been designed, which show promise for conductivity at lowered humidity.

  • PDF

Synthesis and Properties of Nylon 6/PEG Random Block Copolymer/Clay Nanocomposite via in situ Polymerization (in situ중합을 통한 나일론 6-PEG 랜덤공중합체/점토 나노복합체의 합성 및 물성)

  • Angelica S. Lopez;Pio Sifuentes;Kim, Kap-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.72-74
    • /
    • 2003
  • There has been extensive interest in the development of new nanocomposites. One kind of these systems is the hybrid based on organic polymers and inorganic minerals consisting of layered silicates. Some properties like stiffness, strength, barrier properties, thermal, and oxidative stability can be improved by the presence of the filler in the polymeric matrix[1]. It is reported that, in the nylon 6/clay nanocomposites, the modulus is increased, but impact strength and elongation at break are drastically decreased. (omitted)

  • PDF

Synthesis and Characterization of ABA Type Block Copolymers of Trimethylene Carbonate and $\varepsilon$-caprolactone (Trimethylene Carbonate 와 $\varepsilon$-caprolactone ABA 트리블럭 공중합체의 합성 및 특성)

  • Jia, Yong-Tang;Kim, Hak-Yong;Jian Gong;Lee, Duok-Rae;Bin Ding;Narayan Bhattarai
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.352-354
    • /
    • 2002
  • A series of ABA type triblock copolymers of trimethylene carbonate (TMC) and $\varepsilon$-caprolactone($\varepsilon$-CL) with different molar ratio were synthesized using ethylene glycol as initiator and stannous octoate as catalyst by ring-opening bulk polymerization. The characterization of the triblock copolymers was characterized by $^1$H-NMR, $\^$13/C-NMR, FT-IR, GPC and DSC, and compared with random copolymer. (omitted)

  • PDF

Effect of Latex Particle Morphology on the Film Formation and Film Properties of Acrylic Coatings (III);Film Properties of Model Composite Latex (라텍스 입자구조가 필름형성 및 필름물성에 미치는 영향 (III);모델 복합라텍스 입자의 필름물성)

  • Ju, In-Ho;Byeon, Ja-Hun;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.259-266
    • /
    • 2004
  • Film properties of monodispersed model composite latexes with particle size of 190 nm, which consist of n-butyl acrylate as a soft phase monomer and methyl methacrylate as a hard phase monomer with different morphology was examined. Five different types of model latexes were used in this study such as random copolymer particle, soft-core/hard-shell particle, hard-core/soft-shell particle, gradient type particle, and mixed type particle. Tensile strength and tensile elongation at break of final films were evaluated. Those properties can be interpreted in terms of PBA/PMMA phase ratio and their morphology. The interfacial adhesion strength was also evaluated using $180^{\circ}$ peel strength measurement and cross hatch cutting test.

Electroluminescent Properties of Poly(10-octylphenothiazine-co-2',3',6',7'-tertrakis-octyloxy-9-spirobifluorene) of as an Emitting Material

  • Kang, Ji-Soung;Park, Jong-Wook;Lee, Ji-Hoon;Kim, Kyoung-Soo;Choi, Cheol-Kyu;Lee, Sang-Do;Kim, Sang-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1059-1062
    • /
    • 2006
  • We report synthesis and properties of new phenothiazyl polymer derivatives, Poly(10-octyl-10Hphenothiazine-3,7-diyl)(POP), Poly(2',3',6',7'-tertrakis-octyloxy-9-spirobifluorene-2,7-diyl) (PTOSF), and their random copolymers, Poly(10-octylphenothiazine-co-2',3',6',7'-tertrakis-octyloxy-9-spirobifluorene) (POTOSF). PL emission of POP, PTOSF and POTOSF copolymer were found to be 480, 434 and 484nm, respectively. EL emission peak of double-layer EL device of POTOSF was at 494nm (bluish green).

  • PDF

기능성 레진을 이용한 구조화된 나노 입자의 특성

  • 신진섭;박영준;김중현
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.53-53
    • /
    • 2002
  • Alkali-soluble random copolymer (ASR) was used as a functional resin in the emulsion polymerization of styrene to prepare structured nanoparticles. The calorimetric technique was applied to study the kinetics of emulsion polymerization of styrene using ASR and conventional ionic emulsifier, sodium dodecyl benzene sulfonate (SDBS). ASR could form aggregates like micelles and the solubilization ability of the aggregates was dependent on the neutralization degree of ASR. The rate of polymerization in ASR system was lower than that in SDBS system. This result can be explained by the creation of a hairy ASR layer around the particle surface, which decreases the diffusion rate of free radicals through this region. Although a decrease in particle size was observed, the rate of polymerization decreased with increasing ASR concentration. The higher the concentration of ASR is, the thicker and denser ASR layer may be, and the more difficult it would therefore be for radicals to reach the particle through this layer of ASR. The rate of polymerization decreased with increasing the neutralization degree of ASR. The aggregates with high neutralization of ASR are less efficient in solubilizing the monomer and capturing initiator radicals than that of the lower neutralization degree, which leads to decrease in rate of polymerization.

  • PDF

Phase Behavior of Reversibly Associating Star Copolymer-like Polymer Blends

  • June Huh;Kim, Seung-Hyun;Jo, Won-Ho
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • We theoretically consider blends of two monodisperse one-end-functionalized homopolymers (denoted by A and B) capable of forming clusters between functional groups (stickers) using weak segregation theory. In this model system resulting molecular architectures via clustering resemble star copolymers having many A- and B-arms. Minimizing the total free energy with respect the cluster distribution, the equilibrium distribution of clusters is obtained and used for RPA (Random Phase Approximation) equations as input. For the case that polymers are functionalized by only one kind of sticker, the phase diagrams show that the associations promote the macrophase separation. When there is strong affinity between stickers belonging to the different polymer species, on the other hand, the phase diagram show a suppression of the macrophase separation at the range of high temperature regime, as well as the phase coexistence between a disordered and a mesoscopic phase at the relatively lower temperatures.