• Title/Summary/Keyword: random algorithm

Search Result 1,827, Processing Time 0.033 seconds

Usage of coot optimization-based random forests analysis for determining the shallow foundation settlement

  • Yi, Han;Xingliang, Jiang;Ye, Wang;Hui, Wang
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.271-291
    • /
    • 2023
  • Settlement estimation in cohesion materials is a crucial topic to tackle because of the complexity of the cohesion soil texture, which could be solved roughly by substituted solutions. The goal of this research was to implement recently developed machine learning features as effective methods to predict settlement (Sm) of shallow foundations over cohesion soil properties. These models include hybridized support vector regression (SVR), random forests (RF), and coot optimization algorithm (COM), and black widow optimization algorithm (BWOA). The results indicate that all created systems accurately simulated the Sm, with an R2 of better than 0.979 and 0.9765 for the train and test data phases, respectively. This indicates extraordinary efficiency and a good correlation between the experimental and simulated Sm. The model's results outperformed those of ANFIS - PSO, and COM - RF findings were much outstanding to those of the literature. By analyzing established designs utilizing different analysis aspects, such as various error criteria, Taylor diagrams, uncertainty analyses, and error distribution, it was feasible to arrive at the final result that the recommended COM - RF was the outperformed approach in the forecasting process of Sm of shallow foundation, while other techniques were also reliable.

Estimation of frost durability of recycled aggregate concrete by hybridized Random Forests algorithms

  • Rui Liang;Behzad Bayrami
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.91-107
    • /
    • 2023
  • An effective approach to promoting sustainability within the construction industry is the use of recycled aggregate concrete (RAC) as a substitute for natural aggregates. Ensuring the frost resilience of RAC technologies is crucial to facilitate their adoption in regions characterized by cold temperatures. The main aim of this study was to use the Random Forests (RF) approach to forecast the frost durability of RAC in cold locations, with a focus on the durability factor (DF) value. Herein, three optimization algorithms named Sine-cosine optimization algorithm (SCA), Black widow optimization algorithm (BWOA), and Equilibrium optimizer (EO) were considered for determing optimal values of RF hyperparameters. The findings show that all developed systems faithfully represented the DF, with an R2 for the train and test data phases of better than 0.9539 and 0.9777, respectively. In two assessment and learning stages, EO - RF is found to be superior than BWOA - RF and SCA - RF. The outperformed model's performance (EO - RF) was superior to that of ANN (from literature) by raising the values of R2 and reducing the RMSE values. Considering the justifications, as well as the comparisons from metrics and Taylor diagram's findings, it could be found out that, although other RF models were equally reliable in predicting the the frost durability of RAC based on the durability factor (DF) value in cold climates, the developed EO - RF strategy excelled them all.

A new conjugate gradient method for dynamic load identification of airfoil structure with randomness

  • Lin J. Wang;Jia H. Li;You X. Xie
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.301-309
    • /
    • 2023
  • In this paper, a new modified conjugate gradient (MCG) method is presented which is based on a new gradient regularizer, and this method is used to identify the dynamic load on airfoil structure without and with considering random structure parameters. First of all, the newly proposed algorithm is proved to be efficient and convergent through the rigorous mathematics theory and the numerical results of determinate dynamic load identification. Secondly, using the perturbation method, we transform uncertain inverse problem about force reconstruction into determinate load identification problem. Lastly, the statistical characteristics of identified load are evaluated by statistical methods. Especially, this newly proposed approach has successfully solved determinate and uncertain inverse problems about dynamic load identification. Numerical simulations validate that the newly developed method in this paper is feasible and stable in solving load identification problems without and with considering random structure parameters. Additionally, it also shows that most of the observation error of the proposed algorithm in solving dynamic load identification of deterministic and random structure is respectively within 11.13%, 20%.

Comparative Analysis of Effective Algorithm Techniques for the Detection of Syn Flooding Attacks (Syn Flooding 탐지를 위한 효과적인 알고리즘 기법 비교 분석)

  • Jong-Min Kim;Hong-Ki Kim;Joon-Hyung Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.73-79
    • /
    • 2023
  • Cyber threats are evolving and becoming more sophisticated with the development of new technologies, and consequently the number of service failures caused by DDoS attacks are continually increasing. Recently, DDoS attacks have numerous types of service failures by applying a large amount of traffic to the domain address of a specific service or server. In this paper, after generating the data of the Syn Flooding attack, which is the representative attack type of bandwidth exhaustion attack, the data were compared and analyzed using Random Forest, Decision Tree, Multi-Layer Perceptron, and KNN algorithms for the effective detection of attacks, and the optimal algorithm was derived. Based on this result, it will be useful to use as a technique for the detection policy of Syn Flooding attacks.

Application of a comparative analysis of random forest programming to predict the strength of environmentally-friendly geopolymer concrete

  • Ying Bi;Yeng Yi
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.443-458
    • /
    • 2024
  • The construction industry, one of the biggest producers of greenhouse emissions, is under a lot of pressure as a result of growing worries about how climate change may affect local communities. Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues connected to the manufacture of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete, which might be used in lieu of traditional concrete to reduce CO2 emissions in the building industry. In the present work, the compressive strength (fc) of GPC is calculated using random forests regression (RFR) methodology where natural zeolite (NZ) and silica fume (SF) replace ground granulated blast-furnace slag (GGBFS). From the literature, a thorough set of experimental experiments on GPC samples were compiled, totaling 254 data rows. The considered RFR integrated with artificial hummingbird optimization (AHA), black widow optimization algorithm (BWOA), and chimp optimization algorithm (ChOA), abbreviated as ARFR, BRFR, and CRFR. The outcomes obtained for RFR models demonstrated satisfactory performance across all evaluation metrics in the prediction procedure. For R2 metric, the CRFR model gained 0.9988 and 0.9981 in the train and test data set higher than those for BRFR (0.9982 and 0.9969), followed by ARFR (0.9971 and 0.9956). Some other error and distribution metrics depicted a roughly 50% improvement for CRFR respect to ARFR.

Adaptive Random Testing through Iterative Partitioning with Enlarged Input Domain (입력 도메인 확장을 이용한 반복 분할 기반의 적응적 랜덤 테스팅 기법)

  • Shin, Seung-Hun;Park, Seung-Kyu
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.531-540
    • /
    • 2008
  • An Adaptive Random Testing(ART) is one of test case generation algorithms, which was designed to get better performance in terms of fault-detection capability than that of Random Testing(RT) algorithm by locating test cases in evenly spreaded area. Two ART algorithms, such as Distance-based ART(D-ART) and Restricted Random Testing(RRT), had been indicated that they have significant drawbacks in computations, i.e., consuming quadratic order of runtime. To reduce the amount of computations of D-ART and RRT, iterative partitioning of input domain strategy was proposed. They achieved, to some extent, the moderate computation cost with relatively high performance of fault detection. Those algorithms, however, have yet the patterns of non-uniform distribution in test cases, which obstructs the scalability. In this paper we analyze the distribution of test cases in an iterative partitioning strategy, and propose a new method of input domain enlargement which makes the test cases get much evenly distributed. The simulation results show that the proposed one has about 3 percent of improvement in terms of mean relative F-measure for 2-dimension input domain, and shows 10 percent improvement for 3-dimension space.

Modified Adaptive Random Testing through Iterative Partitioning (반복 분할 기반의 적응적 랜덤 테스팅 향상 기법)

  • Lee, Kwang-Kyu;Shin, Seung-Hun;Park, Seung-Kyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.180-191
    • /
    • 2008
  • An Adaptive Random Testing (ART) is one of test case generation algorithms that are designed to detect common failure patterns within input domain. The ART algorithm shows better performance than that of pure Random Testing (RT). Distance-bases ART (D-ART) and Restriction Random Testing (RRT) are well known examples of ART algorithms which are reported to have good performances. But significant drawbacks are observed as quadratic runtime and non-uniform distribution of test case. They are mainly caused by a huge amount of distance computations to generate test case which are distance based method. ART through Iterative Partitioning (IP-ART) significantly reduces the amount of computation of D-ART and RRT with iterative partitioning of input domain. However, non-uniform distribution of test case still exists, which play a role of obstacle to develop a scalable algerian. In this paper we propose a new ART method which mitigates the drawback of IP-ART while achieving improved fault-detection capability. Simulation results show that the proposed one has about 9 percent of improved F-measures with respect to other algorithms.

CHAID Algorithm by Cube-based Sampling

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.239-247
    • /
    • 2003
  • Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, etc. CHAID(Chi-square Automatic Interaction Detector), is an exploratory method used to study the relationship between a dependent variable and a series of predictor variables. In this paper we propose and CHAID algorithm by cube-based sampling and explore CHAID algorithm in view of accuracy and speed by the number of variables.

  • PDF

Network scheduling algorithm for field bus system (필드 버스 시스템을 위한 네트웍 스케쥴링 알고리즘)

  • 추성호;김일환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1348-1351
    • /
    • 1996
  • In field bus network, field device are connected with a medium. Because a medium must be shared for transmitting data, there are random delay time when data arrive destination station. It is difficult that all data packets are guaranteed synchronization and real-time restriction. In this paper, we show an algorithm that makes network utilization to maximum, guarantees real-time restriction, calculates sampling time at all control loop.

  • PDF

An Evolutionary Algorithm preventing Consanguineous Marriage

  • Woojin Oh;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.110.2-110
    • /
    • 2002
  • Evolutionary Algorithm is the general method that can search the optimum value for the various problems. Evolutionary method consists of random selection, crossover, mutation, etc. Since the next generation is selected based on the fitness values, the crossover between chromosomes does not have any restrictions. Not only normal marriage but also consanguineous marriage will take place. In human world, consanguineous marriage was reported to cause various genetic defects, such as poor immunity about new diseases and new environment disaster, These problems translate into searching for the local optimum, not the global optimum. So, a new evolutionary algorithm is needed that prevents traps to...

  • PDF