• Title/Summary/Keyword: random aggregate

Search Result 56, Processing Time 0.027 seconds

Random Utility Models and the Value of National Parks in Korea (확률효용모형 분석을 통한 국립공원의 경제적 가치 평가)

  • Kwon, Oh Sang
    • Environmental and Resource Economics Review
    • /
    • v.14 no.1
    • /
    • pp.51-73
    • /
    • 2005
  • The purpose of this study is estimating the value of recreation of the eighteen national parks in Korea. A conditional logit model and a nested logit model have been estimated for the purpose. The data used for the study have been collected via a national level off-site survey. In addition, the annual aggregate data on the number of visitors to each park have been combined with the survey data to derive more reliable estimates. The paper finds that there are substantial differences in preferences for mountain and marine national parks. Not only the value of each park but also the values of the main characteristics of the parks are estimated.

  • PDF

Aggressive Spatial Reuse Scheme for the 802.11 Wireless LAN (무선랜에서의 적극적 공간 재활용 기법)

  • Kim, Jinkyeong;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.222-228
    • /
    • 2016
  • We provide an aggressive spatial reuse scheme exploiting the space sensed busy when neighboring 802.11 stations radiate radio wave in omni-directions. For this purpose, we develop four strategies, i.e., disruptive RTS, busy random backoff, zero padding, and unavailable pair management. The simulation results show that the proposed scheme can improve the aggregate network throughput from 14% to 50% while the station adopting the proposed scheme coexists with the legacy stations.

PRECISE LARGE DEVIATIONS FOR AGGREGATE LOSS PROCESS IN A MULTI-RISK MODEL

  • Tang, Fengqin;Bai, Jianming
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.447-467
    • /
    • 2015
  • In this paper, we consider a multi-risk model based on the policy entrance process with n independent policies. For each policy, the entrance process of the customer is a non-homogeneous Poisson process, and the claim process is a renewal process. The loss process of the single-risk model is a random sum of stochastic processes, and the actual individual claim sizes are described as extended upper negatively dependent (EUND) structure with heavy tails. We derive precise large deviations for the loss process of the multi-risk model after giving the precise large deviations of the single-risk model. Our results extend and improve the existing results in significant ways.

Synthesis and Thermo-mechanical Property of Multi-walled Carbon Nanotubes/Poly(methyl methacrylate-co-butyl acrylate) Nanocomposites Prepared Using Emulsion Polymerizations in the Presence of Amphiphilic Random Terpolymer

  • Chang, Woo-Hyuck;Ki, Ho-Seong;Cheong, In-Woo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.289-289
    • /
    • 2006
  • The carboxylated MWNTs were successfully prepared by conventional acid treatment, and their structures were confirmed by FT-IR, Raman and TEM analysis. The water-dispersibility of the surface modified WNTs were good. The COOH-MWNT will show better stability during the emulsion polymerization as compared with Pristine MWNT. In-situ emulsion polymerizations of methyl methacrylate N(MMA) and n-butyl acrylate (BA) were carried out. Aggregate size and dispersion stability of the CNTs in water phase were measured using dynamic light scattering, turbidity, UV-visible spectrophotometer, and electron microscope. In addition, thermo-mechanical properties of MWNT/polymer nanocomposites were investigated.

  • PDF

RSA vs DEM in view of particle packing-related properties of cementitious materials

  • Li, Kai;Stroeven, Piet
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.83-91
    • /
    • 2018
  • Various systems for simulating particulate matter are developed and used in concrete technology for producing virtual cementitious materials on the different levels of the microstructure. Basically, the systems can be classified as two distinct families, namely random sequential addition systems (RSAs) and discrete element methods (DEMs). The first type is hardly being used for this purpose outside concrete technology, but became popular among concrete technologists. Hence, it is of utmost relevance to compare the two families in their capabilities, so that the reliability of produced data can be estimated. This paper pursues to do this on the basis of earlier published material of work performed by a succession of PhD students in the group of the second author. Limited references will be given to external sources.

Q-Learning based Collision Avoidance for 802.11 Stations with Maximum Requirements

  • Chang Kyu Lee;Dong Hyun Lee;Junseok Kim;Xiaoying Lei;Seung Hyong Rhee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.1035-1048
    • /
    • 2023
  • The IEEE 802.11 WLAN adopts a random backoff algorithm for its collision avoidance mechanism, and it is well known that the contention-based algorithm may suffer from performance degradation especially in congested networks. In this paper, we design an efficient backoff algorithm that utilizes a reinforcement learning method to determine optimal values of backoffs. The mobile nodes share a common contention window (CW) in our scheme, and using a Q-learning algorithm, they can avoid collisions by finding and implicitly reserving their optimal time slot(s). In addition, we introduce Frame Size Control (FSC) algorithm to minimize the possible degradation of aggregate throughput when the number of nodes exceeds the CW size. Our simulation shows that the proposed backoff algorithm with FSC method outperforms the 802.11 protocol regardless of the traffic conditions, and an analytical modeling proves that our mechanism has a unique operating point that is fair and stable.

Design of Link Cost Metric for IEEE 802.11-based Mesh Routing (IEEE 802.11 MAC 특성을 고려한 무선 메쉬 네트워크용 링크 품질 인자 개발)

  • Lee, Ok-Hwan;Kim, Seong-Kwan;Choi, Sung-Hyun;Lee, Sung-Ju
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.456-469
    • /
    • 2009
  • We develop a new wireless link quality metric, ECOT(Estimated Channel Occupancy Time) that enables a high throughput route setup in wireless mesh networks. The key feature of ECOT is to be applicable to diverse mesh network environments where IEEE 802.11 MAC (Medium Access Control) variants are used. We take into account the exact operational features of 802.11 MAC protocols, such as 802.11 DCF(Distributed Coordination Function), 802.11e EDCA(Enhanced Distributed Channel Access) with BACK (Block Acknowledgement), and 802.11n A-MPDU(Aggregate MAC Protocol Data Unit), and derive the integrated link metric based on which a high throughput end-to-end path is established. Through extensive simulation in random-topology settings, we evaluate the performance of proposed link metric and present that ECOT shows 8.5 to 354.4% throughput gain over existing link metrics.

Noise Averaging Effect on Privacy-Preserving Clustering of Time-Series Data (시계열 데이터의 프라이버시 보호 클러스터링에서 노이즈 평준화 효과)

  • Moon, Yang-Sae;Kim, Hea-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.356-360
    • /
    • 2010
  • Recently, there have been many research efforts on privacy-preserving data mining. In privacy-preserving data mining, accuracy preservation of mining results is as important as privacy preservation. Random perturbation privacy-preserving data mining technique is known to well preserve privacy. However, it has a problem that it destroys distance orders among time-series. In this paper, we propose a notion of the noise averaging effect of piecewise aggregate approximation(PAA), which can be preserved the clustering accuracy as high as possible in time-series data clustering. Based on the noise averaging effect, we define the PAA distance in computing distance. And, we show that our PAA distance can alleviate the problem of destroying distance orders in random perturbing time series.

Self-organized Spectrum Access in Small-cell Networks with Dynamic Loads

  • Wu, Ducheng;Wu, Qihui;Xu, Yuhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.1976-1997
    • /
    • 2016
  • This paper investigates the problem of co-tier interference mitigation for dynamic small- cell networks, in which the load of each small-cell varies with the number of active associated small-cell users (SUs). Due to the fact that most small-cell base stations (SBSs) are deployed in an ad-hoc manner, the problem of reducing co-tier interference caused by dynamic loads in a distributed fashion is quite challenging. First, we propose a new distributed channel allocation method for small-cells with dynamic loads and define a dynamic interference graph. Based on this approach, we formulate the problem as a dynamic interference graph game and prove that the game is a potential game and has at least one pure strategy Nash equilibrium (NE) point. Moreover, we show that the best pure strategy NE point minimizes the expectation of the aggregate dynamic co-tier interference in the small-cell network. A distributed dynamic learning algorithm is then designed to achieve NE of the game, in which each SBS is unaware of the probability distributions of its own and other SBSs' dynamic loads. Simulation results show that the proposed approach can mitigate dynamic co-tier interference effectively and significantly outperform random channel selection.

A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes

  • Zhang, Chao;Zhou, Wei;Ma, Gang;Hu, Chao;Li, Shaolin
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.485-501
    • /
    • 2015
  • Cooling by the flow of water through an embedded cooling pipe has become a common and effective artificial thermal control measure for massive concrete structures. However, an extreme thermal gradient induces significant thermal stress, resulting in thermal cracking. Using a mesoscopic finite-element (FE) mesh, three-phase composites of concrete namely aggregate, mortar matrix and interfacial transition zone (ITZ) are modeled. An equivalent probabilistic model is presented for failure study of concrete by assuming that the material properties conform to the Weibull distribution law. Meanwhile, the correlation coefficient introduced by the statistical method is incorporated into the Weibull distribution formula. Subsequently, a series of numerical analyses are used for investigating the influence of the correlation coefficient on tensile strength and the failure process of concrete based on the equivalent probabilistic model. Finally, as an engineering application, damage and failure behavior of concrete cracks induced by a water-cooling pipe are analyzed in-depth by the presented model. Results show that the random distribution of concrete mechanical parameters and the temperature gradient near water-cooling pipe have a significant influence on the pattern and failure progress of temperature-induced micro-cracking in concrete.