References
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.
- Y. Chen, K. C. Yuen, and K.W. Ng, Precise large deviations of random sums in presence of negative dependence and consistent variation, Methodol. Comput. Appl. Probab. 13 (2011), no. 4, 821-833. https://doi.org/10.1007/s11009-010-9194-7
- Y. Chen and W. P. Zhang, Large deviations for random sums of negatively dependent random variables with consistently varying tails, Statist. Probab. Lett. 77 (2007), no. 5, 530-538. https://doi.org/10.1016/j.spl.2006.08.021
- N. Ebrahimi and M. Ghosh, Multivariate negative dependence, Commun. Stat. Theor. M. 10 (1981), no. 4, 307-337. https://doi.org/10.1080/03610928108828041
- P. Embrechts, C. Kluppelberg, and T. Mikosch, Modelling Extremal Events, Springer, Berlin, 1997.
- C. Kluppelberg and T. Mikosch, Large deviations of heavy-tailed random sums with applications in insurance and finance, J. Appl. Probab. 34 (1997), no. 2, 293-308. https://doi.org/10.2307/3215371
- Z. H. Li and X. B. Kong, A new risk model based on policy entrance process and its weak convergence properties, Appl. Stoch. Models Bus. Ind. 23 (2007), no. 3, 235-246. https://doi.org/10.1002/asmb.669
- L. Liu, Precise large deviations for dependent random variables with heavy tails, Statist. Probab. Lett. 79 (2009), no. 9, 1290-1298. https://doi.org/10.1016/j.spl.2009.02.001
- T. Mikosch and A. V. Nagaev, Large deviations of heavy-tailed sums with applications in insurance, Extremes 1 (1998), no. 1, 81-110. https://doi.org/10.1023/A:1009913901219
- K. W. Ng, Q. Tang, J. A. Yan, and H. Yang, Precise large deviations for the prospective-loss process, J. Appl. Probab. 40 (2003), no. 2, 391-400. https://doi.org/10.1239/jap/1053003551
- K. W. Ng, Q. Tang, J. A. Yan, and H. Yang, Precise large deviations for sums of random variables with consistently varying tails, J. Appl. Probab. 41 (2004), no. 1, 93-107. https://doi.org/10.1239/jap/1077134670
- X. Shen, Z. Lin, and Y. Zhang, Precise large deviations for the actual aggregate loss process, Stoch. Anal. Appl. 27 (2009), no. 5, 1000-1013. https://doi.org/10.1080/07362990903136512
- Q. Tang, Insensitivity to negative dependence of the asymptotic behavior of precise large deviations, Electron. J. Probab. 11 (2006), no. 4, 107-120. https://doi.org/10.1214/EJP.v11-304
- Q. Tang, C. Su, T. Jiang, and J. Zhang, Large deviations for heavy-tailed random sums in compound renewal model, Statist. Probab. Lett. 52 (2001), no. 1, 91-100. https://doi.org/10.1016/S0167-7152(00)00231-5
- Q. Tang and G. Tsitsiashvili, Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks, Stochastic Process. Appl. 108 (2003), no. 2, 299-325. https://doi.org/10.1016/j.spa.2003.07.001
- Y. Wang, K. Wang, and D. Cheng, Precise large deviations for sums of negatively associated random variables with common dominatedly varying tails, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1725-1734. https://doi.org/10.1007/s10114-005-0745-8
- K. Y. Wang, Y. Yang, and J. G. Lin, Precise large deviations for widely orthant dependent random variables with dominatedly varying tails, Front. Math. China. 7 (2012), no. 5, 919-932. https://doi.org/10.1007/s11464-012-0227-0
- Y. Yang, K. Wang, R. Leipus, and J. Siaulys, Precise large deviations for actual aggregate loss process in a dependent compound customer-arrival-based insurance risk model, Lith. Math. J. 53 (2013), no. 4, 448-470. https://doi.org/10.1007/s10986-013-9221-9