DOI QR코드

DOI QR Code

HYBRID ON-OFF CONTROLS FOR AN HIV MODEL BASED ON A LINEAR CONTROL PROBLEM

  • Jang, Tae Soo (Department of Mathematics Inha University) ;
  • Kim, Jungeun (Department of Computational Science and Engineering Yonsei University) ;
  • Kwon, Hee-Dae (Department of Mathematics Inha University) ;
  • Lee, Jeehyun (Department of Mathematics and Department of Computational Science and Engineering Yonsei University)
  • Received : 2014.04.29
  • Published : 2015.05.01

Abstract

We consider a model of HIV infection with various compartments, including target cells, infected cells, viral loads and immune effector cells, to describe HIV type 1 infection. We show that the proposed model has one uninfected steady state and several infected steady states and investigate their local stability by using a Jacobian matrix method. We obtain equations for adjoint variables and characterize an optimal control by applying Pontryagin's Maximum Principle in a linear control problem. In addition, we apply techniques and ideas from linear optimal control theory in conjunction with a direct search approach to derive on-off HIV therapy strategies. The results of numerical simulations indicate that hybrid on-off therapy protocols can move the model system to a "healthy" steady state in which the immune response is dominant in controlling HIV after the discontinuation of the therapy.

Keywords

References

  1. B. M. Adams, H. T. Banks, M. Davidian, H. D. Kwon, H. T. Tran, S. N. Wynne, and E. S. Rosenberg, HIV dynamics: Modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math. 184 (2005), no. 1, 10-49. https://doi.org/10.1016/j.cam.2005.02.004
  2. B. M. Adams, H. T. Banks, H. D. Kwon, and H. T. Tran, Dynamic multidrug therapies for HIV: Optimal and STI control approaches, Math. Biosci. Eng. I (2004), no. 2, 223-241.
  3. J. Alvarez-Ramirez, M. Meraz, and J. X. Velasco-Hernandez, Feedback control of the chemotherapy of HIV, Int. J. Bifur. Chaos 10 (2000), 2207-2219.
  4. H. T. Banks, H. D. Kwon, J. A. Toivanen, and H. T. Tran, A state-dependent Riccati equation-based estimator approach for HIV feedback control, Optimal Control Appl. Methods 27 (2006), no. 2, 93-121. https://doi.org/10.1002/oca.773
  5. S. Bonhoeffer, M. Rembiszewski, G. M. Ortiz, and D. F. Nixon, Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection, AIDS 14 (2000), 2313-2322. https://doi.org/10.1097/00002030-200010200-00012
  6. M. E. Brandt and G. Chen, Feedback control of a biodynamical model of HIV-1, IEEE Trans. on Biom. Engrg. 48 (2001), 754-759. https://doi.org/10.1109/10.930900
  7. D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol. 64 (2001), 29-64.
  8. A. Carr and D. A. Cooper, Adverse effects of antiretroviral therapy, Lancet 356 (2000), 1423-1430. https://doi.org/10.1016/S0140-6736(00)02854-3
  9. Y. H. Dai, L. Z. Liao, and D. Li, On restart procedures for the conjugate gradient method, Numer. Algorithms 35 (2004), no. 2-4, 249-260. https://doi.org/10.1023/B:NUMA.0000021761.10993.6e
  10. K. R. Fister, S. Lenhart, and J. S. McNally, Optimizing chemotherapy in an HIV model, Electron. J. Differential Equation 1998 (1998), no. 32, 1-12.
  11. W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, 1975.
  12. J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim. 2 (1992), no. 1, 21-42. https://doi.org/10.1137/0802003
  13. B. Julg and F. D. Goebel, Treatment interruption in HIV therapy: A SMART Strategy?, Infection 34 (2006), 186-288. https://doi.org/10.1007/s15010-006-6306-y
  14. D. Kirschner, S. Lenhart, and S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Bio. 35 (1997), no. 7, 775-792. https://doi.org/10.1007/s002850050076
  15. L. S. Lasdon, S. K. Mitter, and A. D. Waren, The conjugate gradient method for optimal control problems, IEEE Trans. Automatic Control AC-12 (1967), no. 2, 132-138.
  16. J. Lisziewicz and F. Lori, Structured treatment interruptions in HIV/AIDS therapy, Microbes and Infection 4 (2002), 207-214. https://doi.org/10.1016/S1286-4579(01)01529-5
  17. F. Lori, R. Maserati, et al., Structured treatment interruptions to control HIV-1 infection, The Lancet 354 (2000), 287-288.
  18. D. L. Lukes, Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, Academic Press, New York, 1982.
  19. E. L. Murphy, A. C. Collier, L. A. Kalish, S. F. Assmann, M. F. Para, T. P. Flanigan, P. N. Kumar, L. Mintz, R. R. Wallach, and G. J. Nemo, Highly active antiretroviral therapy decreases mortality and morbidity in patients with advanced HIV disease, Ann. Intern. Med. 135 (2001), 17-26. https://doi.org/10.7326/0003-4819-135-1-200107030-00005
  20. G. C. Palacios, L. M. Sanchez, E. Briones, T. J. Ramirez, H. Castillo, L. G. Rivera, C. A. Vazquez, C. Rodriguez-Padilla, and M. Holodniy, Structured interruptions of highly active antiretroviral therapy in cycles of 4 weeks off/12 weeks on therapy in children having a chronically undetectable viral load cause progressively smaller viral rebounds, Int. J. Infect. Dis. 14 (2010), e34-e40.
  21. F. J. Palella Jr, K. M. Delaney, A. C. Moorman, M. O. Loveless, J. Fuhrer, G. A. Satten, D. J. Aschman, S. D. Holmberg, Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection, HIV Putpatient Study Investigators, N. Engl. J. Med. 338 (1998), 853-860. https://doi.org/10.1056/NEJM199803263381301
  22. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley and Sons, Inc. 528, New York-London, 28, 1962.
  23. E. S. Rosenberg, M. Davidian, and H. T. Banks, Using mathematical modeling andcontrol to develop structured treatment interruption strategies for HIV infection, Drugand Alcohol Dependence 88S (2007), S41-S51.
  24. Z. J. Shi and J. Guo, A new algorithm of nonlinear conjugate gradient method with strong convergence, Comput. Appl. Math. 27 (2008), no. 1, 93-106.
  25. H. Shim, S. J. Han, C. C. Chung, S. Nam, and J. H. Seo, Optimal scheduling of drug treatment for HIV infection: Continuous dose control and receding horixon control, Int. J. Control Autom. Systems 1 (2003), 401-407.
  26. J. D. Siliciano, J. Kajdas, D. Finzi, T. C. Quinn, K. Chadwick, J. B. Margolick, C. Kovacs, S. J. Gange, and R. F. Siliciano, Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells, Nat. Med. 9 (2003), 727-728. https://doi.org/10.1038/nm880
  27. H. M. Speigel, et al., Changes in frequency of HIV-1 specific cytotoxic T cell precursors and circulating effectors after combination anti-retroviral therapy in children, J. Inf. Dis. 180 (1999), 359-368. https://doi.org/10.1086/314867
  28. S. Tang, Y. Xiao, N. Wang, and H. Wu, Piecewise HIV virus dynamic model with CD4+T cell count-guided therapy: I, J. Theoret. Biol. 308 (2012), 123-134. https://doi.org/10.1016/j.jtbi.2012.05.022
  29. L. M. Wein, S. A. Zenios, and M. A. Nowak, Dynamic multidrug therapies for HIV: A control theoretic approach, J. Theoret. Biol. 185 (1997), 15-29. https://doi.org/10.1006/jtbi.1996.0253
  30. D. Wodarz and M. A. Nowak, Specific therapy regimes could lead to long-term immunological control of HIV, Proceedings of the National Academy of Sciences 96 (1999), 4464-14469.