• Title/Summary/Keyword: rainwater tank

Search Result 46, Processing Time 0.022 seconds

Development and Application of Rainwater Collection Model by the Ground (우수의 지표 포집 모델의 개발 및 적용)

  • Lee, Dong-Kon;Lee, Kil-Soo;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.173-180
    • /
    • 2005
  • In this study, quantity and quality of collected rainwater by the ground collection system were investigated and the Rainwater Collection Prediction Model was developed to predict the amount of collected rainwater. The quantity of collected rainwater in the collection system was 9516 L(38.2%) and the quantity of infiltrated rainwater in the collection system was 9946 L(40.2%) through $25m^2$ area for the study period, respectively. Average turbidity of collected rainwater in collection system was 2.2 NTU, and average turbidity of infiltrated rainwater in collection system was 2.3 NTU for study period, respectively. The predicted amount by the model and the actual collected amount were 9842.4 L and 9516 L, which were very close showing that prediction was excellent. The optimal rainwater storage tank volume was simulated with a certain consumption condition for various cities with different rainfall patterns.

Development and Application of the Rainwater Infiltrating Equipment for the Decentralized Stormwater Managements (분산식 우수관리를 위한 침투통 개발 및 적용효과 분석)

  • 성종상;이태구;한영해;김연금;김남희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.78-85
    • /
    • 2004
  • To manage rainwater environmentally friendly, it is necessary to let the rainwater be infiltrated naturally and make reservoirs to detain it in the chosen spot. Not only should it be prepared to handle the city flood, but also it be a necessary alternative for establishing the ecological water circular system in cities. Therefore, considering the present rainwater. management system, this study analysed the status of products which can be interchanged from existent systems to rainwater infiltrating systems. In this study, the infiltrating equipment that is applicable to the Korean drainage system was developed. The case was studied out to investigate the effects of infiltrating and the detaining ability of the developed product. The case site, block 6 of Sang-am residence, was selected and analyzed. The amount of infiltration and detention per unit of the introduced facilities, i.e., infiltrating pipes and tanks were calculated. In this research, the amount of each infiltrating tank was revealed to be 1.353 m/hr and the amount of detention as 0.299 m/hr. And the amount of each infiltrating pipe was found to be 0.541 m/hr and the amount of detention was 0.118 m/hr. To examine the effects of the system, the total amount of the outlet before and after installing was compared and calculated. In doing this, a basis for deciding the arrangement and number of tanks and pipes of the infiltrating system was made.

A Study on the Control and Level Measurement for a Rainwater Tank (우수 저류조 수위측정 및 제어에 대한 연구)

  • Kim, Kee-Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.2 no.4
    • /
    • pp.55-59
    • /
    • 2016
  • In this paper, we propose a system for monitoring and controlling the level of the rainwater tank by installing an underground storage tank as one of ways to increase the utilization rate to solve the water shortage and imbalance. For this purpose, a microprocessor of ATMEL's Atmega 128 is used for the control module, and the sensor capable of measuring the water level uses a float type level sensor which is a kind of tactile sensor. In particular, the level sensor outputs the output in a industry standard dimension, so that the compatibility is improved so as to replace the existing sensor.

The Effect of Decentralized Rainwater Tank System on the Reduction of Peak Runoff - A Case Study at M Village - (빗물저류조의 분산배치에 따른 첨두유출 저감효과 분석 - M 마을 사례 -)

  • Han, Moo-Young;Kum, So-Yoon;Mun, Jung-Soo;Kwak, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • Recently climate change and increase of surface runoff caused the urban flooding. Traditional way of dealing with urban flooding has been to increase the sewer capacity or construction of pumping stations, however, it is practically almost impossible because of time, money and traffic problems. Multipurpose DRMS (Decentralized Rainwater Management System) is a new paradigm proposed and recommended by NEMA (National Emergency Management Agency) for both flood control and water conservation. Suwon City has already enacted the ordinance on sound water cycle management by DRMS. In this study, a flood prone area in Suwon is selected and analysis of DRMS has been made using XP-SWMM for different scenarios of RT installation with same total rainwater tank volume and location. Installing one rainwater tank of 3,000$m^3$ can reduce the peak flow rate by 15.5%. Installing six rainwater tanks of 500$m^3$ volume in the area can reduce the peak flow rate by 28%. Three tanks which is concentrated in the middle region can reduce peak rate more than evenly distributed tanks. The method and results found from this study can be used for the design and performance prediction of DRMS at a flood prone area by supplementing the existing sewer system without increase of the sewer capacity.

Progress of Multipurpose and Proactive Rainwater Management in Korea

  • Han, Mooyoung
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.65-69
    • /
    • 2013
  • Despite the most severe weather and geological conditions, Korean people in earlier times were successful in maintaining sustainable water supplies because they understood the importance of rainwater management, and developed technologies and a philosophy which were needed to live under such circumstances. Recently, the Korean people have suffered frequent incidence of flood damage and drought, and have gradually started to remind themselves of the lessons of the past, which can be described as proactive, multipurpose rainwater management. Most of the problems associated with water and energy can be solved by the integration of rainwater management practices. The concept of multipurpose rainwater management and two examples of its practice are discussed. One is a design for a multipurpose rainwater tank which has been used in a building project, and is based on Korean philosophy. Secondly, a regulation was promulgated recently in Seoul that requires the building of rainwater tanks in new buildings over a certain size. The primary purpose is for the prevention of flooding, but water conservation is a secondary intention. Two examples of proactive rainwater management are discussed, one being public involvement in rainwater management, and the second being the rainwater piggy bank microcredit project. In order to maintain sustainability, to meet the requirements of the Millennium Development Goals, and to be prepared for the effects of climate change, it is expected that multipurpose and proactive rainwater management will be a very effective approach for both developing countries and developed countries. A worldwide network of scientific researchers, as well as a great number of professions, has suggested the promotion of rainwater management.

Design Technique of Rainwater Utilizing System (우수이용 시스템의 설계기법)

  • Jeon, In-Bae;Song, Si-Hun;Ji, Hong-Gi;Lee, Sun-Tak
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.587-596
    • /
    • 2001
  • The purpose of this study is to improve inefficient use of rainwater in island area where it uses rainwater to supply the domestic water and to propose rainwater utilizing system that is most appropriate to the characteristics of precipitation in Korea. To accomplish these purposes, Cheju island was chosen as a study area and the design for the roof area and tank size of rainwater utilizing system was based on the result of the relationship between the actual precipitation and domestic water data which was used in the analysis by run theory to use run theory. Since the result of the analysis indicated that the designed rainwater catchment system was operated stably in Cheju island, the same result is expected in other island too. Therefore, if this system is executed together with the roof rehabilitation work of island area, it will bring positive effects on broth the improvement of residental environment and the security of domestic water.

  • PDF

Benefit of the Drinking Water Supply System in Office Building by Rainwater Harvesting: A Demo Project in Hanoi, Vietnam

  • Dao, Anh-Dzung;Nguyen, Viet-Anh;Han, Mooyoung
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.103-108
    • /
    • 2013
  • Vietnam is a developing country with the rate around 5%-6% per year, especially in urban areas. Rapidly developed urban areas lead to stress for infrastructure and the water supply is also stressed. In Hanoi city, total water capacity from the manufactories is around one million cubic meters per day and almost the entire main water source is groundwater but it is not enough to supply all of Hanoi's people, especially in the summer. A demo project is implemented in Hanoi University of Civil Engineering (HUCE) to produce drinking water by using the rainwater and membrane system and supply for people. In this project, rainwater is collected on the rooftop of the lecture building with an area of around $500m^2$ and $100m^3$ volumetric rainwater tanks. Afterwards, the rainwater is treated by the micro-membrane system and supplied to the tap water. Total cost for construction, technology and operation in the first year is around USD 48,558. In the long-term (15 yr) if HUCE invests in the same system, with $20m^3$ volumetric storage tank, it can provide drinking water for 500 staffs in every year. The cost of investment and operation for this system is lower than 30% compared to buying bottled water with the price USD 1.8/bottle. The drinking water parameters after treatment are pH, 7.3-7.75; turbidity, 0.6-0.8 NUT; total dissolved solids, 60-89 mg/L; coliform, 0; heavy metal similar with water quality in the bottle water in Vietnam.

Hydrological Evaluation of Rainwater Harvesting: 1. Hydrological Analysis (빗물이용의 수문학적 평가: 1. 수문해석)

  • Yoo, Chulsang;Kim, Kyoungjun;Yun, Zuhwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.221-229
    • /
    • 2008
  • This study revised a model for hydrologically analyzing rainwater harvesting facilities considering their rainfall-runoff properties and the data available. This model has only a few parameters, which can be estimated with rather poor measurements available. The model has a non-linear module for rainfall loss, and the remaining rainfall excess (effective rainfall) is assumed to be inflow to the storage tank. This model has been applied for the rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology, and the Daejon World Cup Stadium. As a result, the runoff coefficients estimated were about 0.9 for the building roof as a rainwater collecting surface and about 0.18 for the playground. This result is coincident with that for designing the rainwater harvesting facilities to show the accuracy of model and the simulation results.

VALUATION OF A MULTI-STAGE RAINWATER HARVESTING TANK CONSTRUCTION USING A REAL OPTION APPROACH

  • Byungil Kim;Hyoungkwan Kim;SangHyun Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.386-389
    • /
    • 2013
  • Under climate change and urbanization, rainwater harvesting (RWH) systems are emerging as an alternative source of water supply because of growing concern about water sustainability. RWH systems can satisfy the various watering needs and provide the environmental benefits of lessening the damages from flood, drought, and runoff. The economic success of a RWH system is vitally concerned with the determination of the design capacity of storage tank to be built in the system. The design capacity is determined by the factors of average annual rainfall, period of water scarcity, and water price during the whole life-cycles. Despite the high uncertainties inherent in these factors, the current engineering design of RWH system construction often assumes that storage tanks should be built all at once. This assumption implicitly ignores the managerial flexibility in responds to the future as new information comes out-the right to build storage tanks stage by stage depending on the evolution of demand. This study evaluates the value of a multistage storage tank construction using a real option approach. A case study involving a typical RWH system construction in Jeonju, the Republic of Korea is conducted. The managerial flexibility obtained from the real option perspective allows engineers to develop investment strategies to better cope with the issue of water sustainability.

  • PDF

Simulation on Loading Strength of Rainwater Storage Tank Unit (우수저류조 유닛의 하중강도에 대한 모의실험 분석)

  • Lee, Sang-Woo;Nam, Dong-Kun;Choi, Jong-Moon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.107-113
    • /
    • 2013
  • The design of rainwater storage system unit to manufacture its reservoir tank was tried, the simulation to predict of their structural strength was carried out. Rainwater storage system unit should be easy to their machinability, transport and assemble. Especially, their structure was able to secure the water storage space, withstand loads and easily response to pollution. Considering these various requirements, they have to Doria-pillar structure of the Roman architectural style because these designs could disperse the loads which are applied to them. Therefore, the six kinds of models possible were proposed. Several boundary conditions were given to each model. Their structural strength was predicted through the simulation on their stress and the displacement distribution to constant load. From the evaluated data, the structure which has a large pillar in the central of unit and four small pillars each corner was the best.