Hydrological Evaluation of Rainwater Harvesting: 1. Hydrological Analysis

빗물이용의 수문학적 평가: 1. 수문해석

  • Yoo, Chulsang (Department of Architectural, Civil and Environmental Engineering, Korea University) ;
  • Kim, Kyoungjun (Department of Architectural, Civil and Environmental Engineering, Korea University) ;
  • Yun, Zuhwan (Department of Environmental Engineering, Korea University)
  • 유철상 (고려대학교 건축.사회환경공학과) ;
  • 김경준 (고려대학교 건축.사회환경공학과) ;
  • 윤주환 (고려대학교 환경공학과)
  • Received : 2007.10.30
  • Accepted : 2008.03.10
  • Published : 2008.03.30

Abstract

This study revised a model for hydrologically analyzing rainwater harvesting facilities considering their rainfall-runoff properties and the data available. This model has only a few parameters, which can be estimated with rather poor measurements available. The model has a non-linear module for rainfall loss, and the remaining rainfall excess (effective rainfall) is assumed to be inflow to the storage tank. This model has been applied for the rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology, and the Daejon World Cup Stadium. As a result, the runoff coefficients estimated were about 0.9 for the building roof as a rainwater collecting surface and about 0.18 for the playground. This result is coincident with that for designing the rainwater harvesting facilities to show the accuracy of model and the simulation results.

Keywords

References

  1. 건설교통부(1990). 수자원장기종합계획. 연구보고서
  2. 건설교통부(2000). 수자원장기종합계획. 연구보고서
  3. 과학기술부(2004). 21세기 프론티어연구개발사업-수자원의 지속적 확보기술개발사업-우수 저류 및 활용기술 개발. 연구보고서
  4. 농림부(2003). 농어촌지역 우수의 생활용수 이용시스템 개발. 연구보고서
  5. 대한상공회의소(2004). 빗물이용시설 활성화 방안의 문제점 및 개선방안. 연구보고서
  6. 대한상하수도학회(2003). 빗물이용시설 보급 확대를 위한 정책방안 연구. 연구보고서
  7. 대한상하수도학회(2005). 빗물이용시범시설 운영.관리 모니터링 연구. 연구보고서
  8. 박용희(2006). IHACRES 모형을 이용한 관측유량의 평가 및 보완. 석사학위논문, 고려대학교
  9. 서울시정개발연구원(2003). 빗물이용을 통한 도시 침수저감 및 수돗물 절약방안. 연구보고서, 시정연 2003-R-13
  10. 한무영, 김영완(2004). 서울대학교 기숙사 빗물이용시설의 개요와 경제성 평가. 상하수도학회지, 18, pp. 547-557
  11. Al-Jayyousi, O. R. (2003). Greywater reuse: towards sustainable water management. Desalination, 164, pp. 241-247 https://doi.org/10.1016/S0011-9164(04)00192-4
  12. Andreassian, V., Perrin, C., Michel, C., Usart-Sanchez, I. and Lavabre, J. (2001). Impact of imperfect rainfall knowledge on the efficiency and the parameters of watershed models. Journal of Hydrology, 250, pp. 206-223 https://doi.org/10.1016/S0022-1694(01)00437-1
  13. Appan, A. (1999). A dual-mode system for harnessing roofwater for non-potable uses. Urban Water, 1, pp. 317-321 https://doi.org/10.1016/S1462-0758(00)00025-X
  14. Arnold, J. G., Srinivasan, R., Muttiah, R. S. and Williams, J. R. (1998). Large area hydrologic modelling and assessment, Part 1. Model development. Journal of the American Water Resources Association, 34, pp. 73-89 https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  15. Chilton, J. C., Maidment. G. G., Marriott, D., Francis, A. and Tobias, G. (1999). Case study of a rainwater recovery system in a commercial building with a large roof. Urban Water, 1, pp. 345-354 https://doi.org/10.1016/S1462-0758(00)00032-7
  16. Christova-Boal, D., Eden, R. E. and McFarlane, S. (1996). As investigation into greywater reuse for urban residential properties. Desalination, 106, pp. 391-397 https://doi.org/10.1016/S0011-9164(96)00134-8
  17. Croke, B. F. W. and Jakeman, A. J. (2004a). A catchment moisture deficit module for the IHACRES rainfallrunoff model. Environmental Modelling and Software, 19, pp. 1-5 https://doi.org/10.1016/j.envsoft.2003.09.001
  18. Croke, B. F. W., Merritt, W. S. and Jakeman, A. J. (2004b). A dynamic model for predicting hydrologic response to land cover changes in gauged and ungauged catchments. Journal of Hydrology, 291, pp. 115-131 https://doi.org/10.1016/j.jhydrol.2003.12.012
  19. Dye, P. J. and Croke, B. F. W. (2003). Evaluation of streamflow predictions by the IHACRES rainfallrunoff model in two South African catchments. Environmental Modelling and Software, 18, pp. 705-712 https://doi.org/10.1016/S1364-8152(03)00072-0
  20. Fewkes, A. (1999a). Modelling the performance of rainwater collection systems : towards a generalised approach. Urban Water, 1, pp. 323-333 https://doi.org/10.1016/S1462-0758(00)00026-1
  21. Fewkes, A. (1999b). The Use of rainwater for WC flushing: the field testing of a collection system. Building Environment, 34, pp. 765-772 https://doi.org/10.1016/S0360-1323(98)00063-8
  22. Ghisi, E. (2006). Potential for potable water saving by using rainwater in the residential sector of Brazil. Building and Environment, 41, pp. 1544-1550 https://doi.org/10.1016/j.buildenv.2005.03.018
  23. Ghisi, E., Bressan, D. L. and Martini, M. (2007). Rainwater tank capacity and potential for potable water saving by using rainwater in the residential sector of southeastern Brazil. Building and Environment, 42, pp. 1654-1666 https://doi.org/10.1016/j.buildenv.2006.02.007
  24. Ghisi, E., Montibeller, A., and Schmidt, R. W. (2006). Potential for potable water saving by using rainwater : An analysis over 62 cities in southern Brazil. Building and Environment, 41, pp. 204-210 https://doi.org/10.1016/j.buildenv.2005.01.014
  25. Handia, L., Tembo, J. M. and Mwiindwa, C. (2003). Potential of rainwater harvesting in urban Zambia. Physics and Chemistry of the Earth, 28, pp. 893-896 https://doi.org/10.1016/j.pce.2003.08.016
  26. Hansen, D. P., Ye, W., Jakeman, A. J., Cooke, R. and Sharma, P. (1996). Analysis of the effect of rainfall and streamflow data quality and catchment dynamics on streamflow prediction using the rainfall-runoff model IHACRES. Environmental Software, 11, pp. 193-202 https://doi.org/10.1016/S0266-9838(96)00048-2
  27. Jakeman, A. J. and Hornberger, G. M. (1993). How much complexity is warranted in a rainfall-runoff model?. Water Resources Research, 29, pp. 2637-2649 https://doi.org/10.1029/93WR00877
  28. Jakeman, A. J., Littlewood, I. G. and Whitehead, P. G. (1990). Computation of the instantaneous unit hydrograph and identifiable Component flows with application to two small upland catchments. Journal of Hydrology, 117, pp. 275-300 https://doi.org/10.1016/0022-1694(90)90097-H
  29. Leavesley, G. H., Lichty, R. W., Troutman, B. M. and Saindon, L. G. (1983). Precipitation-runoff modeling system; user's manual. U.S. Geological Survey Water Resources Investigations, 83-4238, pp. 207
  30. Lee, K. T., Lee, C. D., Yang, M. S. and Yu, C. C. (2000). Probabilistic design of storage capacity for rainwater cistern system. Journal of Agricultural Engineering Research, 77, pp. 343-348 https://doi.org/10.1006/jaer.2000.0597
  31. Nolde, E. (1999). Greywater reuse for toilet flushing in multistorey buildings over ten years experience in Berlin. Urban Water, 1, pp. 275-284 https://doi.org/10.1016/S1462-0758(00)00023-6
  32. Sefton, C. E. M. and Howarth, S. M. (1998). Relationships between dynamic response characteristics and physical descriptors of catchments in England and Wales. Journal of Hydrology, 211, pp. 1-16 https://doi.org/10.1016/S0022-1694(98)00163-2
  33. Sugawara, M. I., Watanabe, I., Ozaki, E. and Katsuyame, Y. (1983). Reference manual for the TANK model. Report, National Research Center for disaster prevent, Tokyo, Japan
  34. Tabios III, G., Obeysekera, J. T. and Salas, J. D. (1991). Forecasting and control of water resources system(NWS-PC Model). U.S., National Weather Service Center
  35. Thomas, T. (1998). Domestic water supply using rainwater harvesting. Building Research and Information, 26, pp. 94-101 https://doi.org/10.1080/096132198370010
  36. Villarreal, E. L. and Dixon, A. (2005). Analysis of a rainfall collection system for domestic water supply in Ringdansen, Norrloping, Sweden. Building and Environmental, 40, pp. 1174-1184 https://doi.org/10.1016/j.buildenv.2004.10.018
  37. Wung, T. C., Lin, S. H. and Huang, S. M. (2006). Rainwater reuse supply and demand response in urban elementary school of different districts in Taipei. Resources, Conservation and Recycling, 46, pp. 149-167 https://doi.org/10.1016/j.resconrec.2005.06.009