• Title/Summary/Keyword: rainfall patterns

Search Result 269, Processing Time 0.025 seconds

A Study on the Heavy Rainfall Cases Associated with Low Level Jet Inflow along the Changma Front (장마전선상에서 하층제트 유입으로 인한 집중호우에 관한 연구)

  • Choi, Ji-Young;Shin, Ki-Chang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.44-57
    • /
    • 2011
  • In general, heavy rainfall in Korea is mostly associated with inflow of 850hPa low-level jet. It transports abundant heat and moisture flux to the Changma front. In this study, synoptic characteristics of heavy rainfall in Korea from a case study is examined by classifying heavy rainfall cases with synoptic patterns, in particular distribution of upper- and low-level jets, western North Pacific high, and moisture flux. The surface and upper-level weather charts including auxiliary analysis chart and radar and satellite images obtained from the Korea Meteorological Administration, and 500hPa geopotential heights from NCEP/NCAR are used and then KLAPS is applied to understand the local atmospheric structure associated with heavy rainfall. Results show that maximum frequency in 60 heavy rainfall cases with more than 150mm/day appears in the Changma type of 43 cases (a proportion in relation to a whole is 52%) including the combined Changma types with typhoon and cyclone. As indicated in previous studies, most heavy rainfall cases are related to inflow of low-level jet. In addition, synoptic characteristics based on the analyses of weather charts, radar and satellite images, and KLAPS in heavy rainfall case of 12 July, 2009 reveal that the atmospheric vertical structure in particular equivalent potential temperature favorable for effective inflow of warm and moist southwesterly into the Changma front is linked to large potential instability and the strong convergence accompanied with low-level jet around Suwon contributes to atmospheric upsliding along the Changma front, producing heavy rainfall.

Application of Self-Organizing Map for the Characteristics Analysis of Rainfall-Storage and TOC Variation in a Lake (호소수의 강우-저류량 및 TOC변동 특성분석을 위한 자기조직화 방법의 적용)

  • Kim, Yong Gu;Jin, Young Hoon;Jung, Woo Cheol;Park, Sung Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.611-617
    • /
    • 2008
  • It is necessary to analysis the data characteristics of discharge and water quality for efficient water resources management, aggressive alternatives to inundation by flood and various water pollution accidents, the basic information to manage water quality in lakes and to make environmental policy. Therefore, the present study applied Self-Organizing Map (SOM) showing excellent performance in classifying patterns with weights estimated by self-organization. The result revealed five patterns and TOC versus rainfall-storage data according to the respective patterns were depicted in two-dimensional plots. The visualization presented better understanding of data distribution pattern. The result in the present study might be expected to contribute to the modeling procedure for data prediction in the future.

The Synoptic Meteorological Characteristics of Spring Rainfall in South Korea during 2008~2012 (최근 5년(2008~2012) 간 우리나라에 내린 봄비의 종관기상학적 특성)

  • Park, So-Yeon;Lee, Yong-Gon;Kim, Jung-Yun;Ahn, Suk-Hee;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.443-451
    • /
    • 2013
  • Spring rainfall events were comprehensively analyzed based on the distribution of precipitation amount and the related synoptic weather between 2008~2012. Forty-eight cases are selected among the rain events of the entire country, and each distribution of the 24-hour accumulated precipitation amount is classified into three types: evenly distributed rain(Type 1), more rain in the southern area and south coast region (Type 2), and more rain in the central region (Type 3), respectively. Type 1 constitutes the largest part(35 cases, 72.9%) with mean precipitation amount of 19.4 mm, and the 17 cases of Type 1 are observed in March. Although Type B and C constitutes small parts (11 cases, 22.9% and 2 cases, 4.2%), respectively. The precipitation amount of these types is greater than 34.5 mm and occurred usually in April. The main synoptic weather patterns affecting precipitation distribution are classified into five patterns according to the pathway of low pressures. The most influential pattern is type 4, and this usually occurs in March, April, and May (Low pressures from the north and the ones from the west and south consecutively affect South Korea, 37.5%). The pattern 3(Low pressures from the south affect South Korea, 25%) happens mostly in April, and the average precipitation is usually greater than 30 mm. This value is relatively higher than the values in any other patterns.

A Bayesian Prediction of the Generalized Pareto Model (일반화 파레토 모형에서의 베이지안 예측)

  • Huh, Pan;Sohn, Joong Kweon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1069-1076
    • /
    • 2014
  • Rainfall weather patterns have changed due to global warming and sudden heavy rainfalls have become more frequent. Economic loss due to heavy rainfall has increased. We study the generalized Pareto distribution for modelling rainfall in Seoul based on data from 1973 to 2008. We use several priors including Jeffrey's noninformative prior and Gibbs sampling method to derive Bayesian posterior predictive distributions. The probability of heavy rainfall has increased over the last ten years based on estimated posterior predictive distribution.

Abiotic effects on calling phenology of three frog species in Korea

  • Yoo, Eun-Hwa;Jang, Yi-Kweon
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.260-267
    • /
    • 2012
  • Calling behavior is often used to infer breeding patterns in anurans. We studied the seasonal and diel calling activities of anuran species in a wetland in central Korea to determine the calling season and to evaluate the effects of abiotic factors on male calling. Acoustic monitoring was used in which frog calls were recorded for a full day, once a week, throughout an entire year. Using acoustic monitoring, we identified three frog species in the study site. Males of Rana dybowskii called in late winter and early spring; we thus classified this species as a winter/spring caller. The results of binary logistic regression showed that temperature, relative humidity, and 1-day lag rainfall were significant factors for male calling in R. dybowskii. Temperature and relative humidity were important factors for the calling activity of R. nigromaculata, whereas 24-h rainfall and 1-day lag rainfall were not significant. Thus, we determined R. nigromaculata to be a summer caller independent of weather. In Hyla japonica, relative humidity, 24-h rainfall, and 1- day lag rainfall were significant for male calling, suggesting that this species is a summer caller dependent on local rain.

Application of Bias-Correction and Stochastic Analogue Method (BCSA) to Statistically Downscale Daily Precipitation over South Korea (남한지역 일단위 강우량 공간상세화를 위한 BCSA 기법 적용성 검토)

  • Hwang, Syewoon;Jung, Imgook;Kim, Siho;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.49-60
    • /
    • 2021
  • BCSA (Bias-Correction and Stochastic Analog) is a statistical downscaling technique designed to effectively correct the systematic errors of GCM (General Circulation Model) output and reproduce basic statistics and spatial variability of the observed precipitation filed. In this study, the applicability of BCSA was evaluated using the ASOS observation data over South Korea, which belongs to the monsoon climatic zone with large spatial variability of rainfall and different rainfall characteristics. The results presented the reproducibility of temporal and spatial variability of daily precipitation in various manners. As a result of comparing the spatial correlation with the observation data, it was found that the reproducibility of various climate indices including the average spatial correlation (variability) of rainfall events in South Korea was superior to the raw GCM output. In addition, the needs of future related studies to improve BCSA, such as supplementing algorithms to reduce calculation time, enhancing reproducibility of temporal rainfall patterns, and evaluating applicability to other meteorological factors, were pointed out. The results of this study can be used as the logical background for applying BCSA for reproducing spatial details of the rainfall characteristic over the Korean Peninsula.

Water quality management strategy based on organic matter characteristics of streams and lakes in the Namhan River Watershed

  • Hyeonjong Youn;Chaewon Kang;Kyungik Gil
    • Membrane and Water Treatment
    • /
    • v.15 no.3
    • /
    • pp.99-106
    • /
    • 2024
  • This study developed an efficient management plan to improve the water quality by analyzing fluctuations in the ratio and amount of various organic substances in streams considering watershed characteristics and rainfall patterns. Monitoring was conducted on three streams and one lake over seven sessions during wet and dry seasons. Water quality indicators including total organic (TOC), refractory dissolved organic (RDOC), and particulate organic (POC) carbons were analyzed using high-temperature combustion oxidation. The three streams (Cheongmi, Yanghwa, and Bokha) displayed high TOC concentrations during the rainy season because the accumulated organic substances from the dry season were washed away by rainfall. By contrast, Paldang Lake exhibited a substantial decrease in TOC concentration due to dilution, which was influenced by watershed and rainfall characteristics. Across all streams and lakes, dissolved organic carbon (DOC) accounted for the highest proportion, at 77.5% of TOC, with RDOC making up 91% of DOC and 71% of TOC. Although POC contributed a small annual proportion to annual TOC, the concentration rapidly increased during late spring and early summer, with increases of 40.403%, 25.99%, and 27.388% in Cheongmi, Yanghwa, and Bokha, respectively. Continuous monitoring of RDOC is essential to identify seasonal fluctuations and changes due to rainfall events. Furthermore, intensive POC management during the rainy season, particularly in May and June, is potentially economical and efficient for water quality management.

Parameter Estimation of a Distributed Hydrologic Model using Parallel PEST: Comparison of Impacts by Radar and Ground Rainfall Estimates (병렬 PEST를 이용한 분포형 수문모형의 매개변수 추정: 레이더 및 지상 강우 자료 영향 비교)

  • Noh, Seong Jin;Choi, Yun-Seok;Choi, Cheon-Kyu;Kim, Kyung-Tak
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1041-1052
    • /
    • 2013
  • In this study, we estimate parameters of a distributed hydrologic model, GRM (grid based rainfall-runoff model), using a model-independent parameter estimation tool, PEST. We implement auto calibration of model parameters such as initial soil moisture, multipliers of overland roughness and soil hydraulic conductivity in the Geumho River Catchment and the Gamcheon Catchment using radar rainfall estimates and ground-observed rainfall represented by Thiessen interpolation. Automatic calibration is performed by GRM-MP (multiple projects), a modified version of GRM without GUI (graphic user interface) implementation, and "Parallel PEST" to improve estimation efficiency. Although ground rainfall shows similar or higher cumulative amount compared to radar rainfall in the areal average, high spatial variation is found only in radar rainfall. In terms of accuracy of hydrologic simulations, radar rainfall is equivalent or superior to ground rainfall. In the case of radar rainfall, the estimated multiplier of soil hydraulic conductivity is lower than 1, which may be affected by high rainfall intensity of radar rainfall. Other parameters such as initial soil moisture and the multiplier of overland roughness do not show consistent trends in the calibration results. Overall, calibrated parameters show different patterns in radar and ground rainfall, which should be carefully considered in the rainfall-runoff modelling applications using radar rainfall.

Analysis of the Characteristics of Precipitation Over South Korea in Terms of the Associated Synoptic Patterns: A 30 Years Climatology (1973~2002) (종관적 특징에 따른 남한 강수 특성 분석: 30년 (1973~2002) 기후 통계)

  • Rha Deuk-Kyun;Kwak Chong-Heum;Suh Myoung-Seok;Hong Yoon
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.732-743
    • /
    • 2005
  • The characteristics of precipitation over South Korea from 1973 to 2002 were investigated. The synoptic patterns inducing precipitation are classified by 10 categories, according to the associated surface map analysis. The annual mean frequency of the total precipitation, its duration time and amount for 30 years are 179 times, 2.9 hours, and 7.1 mm, respectively. About $59\%$ of the total precipitation events were associated with a synoptic low. The dominant patterns are identified with respect to seasons: A synoptic mobile low pressure pattern is frequent in spring, fall, and winter, whereas low pressure embedded within the Changma and orography induced precipitation are dominant in summer and in winter. For the amount of precipitation, precipitation originated from tropical air associated with typhoon, tropical convergence, and Changma is more significant than that with other pressure patterns. The statistical elapse time reaching to 80 mm, which is the threshold amount of heavy rainfall watch at KMA, takes 12.9 hours after the onset of precipitation. The probability distribution function of the precipitation shows that the maximum probability for heavy rainfall is located at the south-coastal region of the Korean peninsula. It is also shown that the geographical distribution of the Korean peninsula plays an important role in occurrence of heavy rainfall. For example, heavy precipitation is frequently occurred at Youngdong area, when typhoon passes along the coastal region of the back borne mountains in the peninsula. The climatological classification of synoptic patterns associated with heavy rainfall over South Korea can be used to provide a guidance to operational forecast of heavy rainfall in KMA.

Typical Patterns of the Heavy Rains and their Associated Atmospheric Circulation (전형적인 호우와 연관된 대기순환)

  • Hi-Ryong Byun;Mo-Rang Her
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.177-184
    • /
    • 1998
  • The spatial rainfall distributions accompanied by the heavy rainfalls in the Korean peninsula were class-sified to 6 typical patterns and synoptic characteristics of each pattern were muined. 274 cases of heavy rainfall events occurred for 10 years from 1981 through 1990 were used for thls study In the 4 types of them, heavy rainfalls are not by the strongly developed but by the rapidly deepening low pressure systems. which have a wall defiried low and high level jets before arrival to the Korean peninsula. In another 2 types, heavy rainfall are due to speciauy developed surface low pressure system. Most of the heavy rain areas are associated with the location of the low level Jets and their direction and with the position of surface warm front. In the 4 types, the heavy rain areas extend In zonal direction. And the latitudinal locations of these areas are associated with the polar low center or strong main trough over 500 hPa level. The more northwestern part of the Asla the low locates the higher latitude in the Korean Peninsula the rainfall concentration occurs at. It is also known that the seasonal drifting of the lows have some relations to the procession of summer monsoon but its characteristics change year by year.

  • PDF