• Title/Summary/Keyword: rainfall index

Search Result 398, Processing Time 0.025 seconds

The Development of Rail-Transport Operation Control based on Unsaturated Soil Mechanics Concept (불포화토이론을 이용한 강우시 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Shin, Min-Ho;Kim, Soo-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.25-31
    • /
    • 2004
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall Infiltration show that rainfall Infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

Selection of dominant meteorological indices related with heavy rainfall caused by BAIU activity

  • Koji, Nishiyama;Yoshitaka, I;Kenji, Jinno;Akira, Kawamura
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2003.05a
    • /
    • pp.163-170
    • /
    • 2003
  • In this study, paying much attention to notable features obtained from spatial distributions of strongly related indices (precipitable water, convergence of air, convective available potential energy) with precipitation, fatal problems in selecting strongly related indices with observed precipitation in a BAIU season were discussed. These results showed spatial distribution of a predicted index provided alternative and physically consistent interpretation for selecting dominant index for heavy rainfall even if the predicted index did not correlate with observed rainfall at a specific observational point as confirmed by the features of CONV (Convergence) or even if it correlated with observed rainfall as confirmed by those of PW (Precipitable Water). Therefore, dominant meteorological indices of heavy rainfall should be selected according to physically evidenced interpretation on features of spatial distributions of indices, and physically and statistically consistent relationship should be built up.

  • PDF

Studies on the Predictability of Heavy Rainfall Using Prognostic Variables in Numerical Model (모델 예측변수들을 이용한 집중호우 예측 가능성에 관한 연구)

  • Jang, Min;Jee, Joon-Beom;Min, Jae-sik;Lee, Yong-Hee;Chung, Jun-Seok;You, Cheol-Hwan
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.495-508
    • /
    • 2016
  • In order to determine the prediction possibility of heavy rainfall, a variety of analyses was conducted by using three-dimensional data obtained from Korea Local Analysis and Prediction System (KLAPS) re-analysis data. Strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Heavy rainfall occurred in the cloud system with a thick convective clouds. The moisture convergence, temperature and potential temperature advection showed increase into the heavy rainfall occurrence area. The distribution of integrated liquid water content tended to decrease as rainfall increased and was characterized by accelerated convective instability along with increased buoyant energy. In addition, changes were noted in the various characteristics of instability indices such as K-index (KI), Showalter Stability Index (SSI), and lifted index (LI). The meteorological variables used in the analysis showed clear increases or decreases according to the changes in rainfall amount. These rapid changes as well as the meteorological variables changes are attributed to the surrounding and meteorological conditions. Thus, we verified that heavy rainfall can be predicted according to such increase, decrease, or changes. This study focused on quantitative values and change characteristics of diagnostic variables calculated by using numerical models rather than by focusing on synoptic analysis at the time of the heavy rainfall occurrence, thereby utilizing them as prognostic variables in the study of the predictability of heavy rainfall. These results can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of such precipitation. In the analysis of various case studies of heavy rainfall in the future, our study result can be utilized to show the development of the prediction of severe weather.

Investigating Changes over Time of Precipitation Indicators (강수지표의 시간에 따른 변화 조사)

  • Han, Bong-Koo;Chung, Eun-Sung;Lee, Bo-Ram;Sung, Jang Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.233-250
    • /
    • 2013
  • Gradually or radically change how the characteristics of the climate characteristic using change point analysis for the precipitation indicators were investigated. Significantly the amount, extreme and frequency were separated by precipitation indicators, each indicator RIA(Rainfall Index for Amount), RIE(Rainfall Index for Extremes) and RIF(Rainfall Index for Frequency) was defined. Bayesian Change Point was applied to investigate changing over time of precipitation indicators calculated. As the result of analysis, precipitation indicators in South Korea was found to recently increase all indicators except for the annual precipitation days and 200-yr precipitation. RIA revealed that there was a very clear point of significance for the change in Ulleungdo, Relatively significant results for RIE were identified in Gumi, Jecheon and Seogwipo. Also, since the 1990s, an increase in the number of variation points, and the horizontal width of the fluctuation point was being relatively wider. Based on these results, rethink the precipitation on the assumption of stationarity was judged necessary.

Analysis of drought in Northwestern Bangladesh using standardized precipitation index and its relation to Southern oscillation index

  • Nury, Ahmad Hasan;Hasan, Khairul
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.58-68
    • /
    • 2016
  • The study explored droughts using the Standardized Precipitation Index (SPI) in the northwestern region of Bangladesh, which is the drought prone area. In order to assess the trend and variability of monthly rainfall, as well as 3-month scale SPI, non-parametric Mann-Kendall (MK) tests and continuous wavelet transform were used respectively. The effect of climatic parameters on the drought in this region was also evaluated using SPI, with the Southern Oscilation Index (SOI) by means of the wavelet coherence technique, a relatively new and powerful tool for describing processes. The MK test showed no statistically significant monthly rainfall trends in the selected stations, whereas the seasonal MK test showed a declining rainfall trend in Bogra, Ishurdi, Rangpur and Sayedpur stations respectively. Sen's slope of six stations also provided a decreasing rainfall trend. The trend of the SPI, as well as Sen's slope indicated an increasing dryness trend in this area. Dominant periodicity of 3-month scale SPI at 8 to 16 months, 16 to 32 months, and 32 to 64 months were observed in the study area. The outcomes from this study contribute to hydrologists to establish strategies, priorities and proper use of water resources.

Calculation of Rainfall Triggering Index (RTI) to Predict the Occurrence of Debris Flow (토석류 발생 예측을 위한 강우경보지수 산정)

  • Nam, Dong-Ho;Lee, Suk-Ho;Kim, Man-Il;Kim, Byung-Sik
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.47-59
    • /
    • 2018
  • At present, there has been a wide range of studies on debris flow in Korea, more specifically, on rainfall characteristics that trigger debris flow including rainfall intensity, rainfall duration, and preceding rainfall. the prediction of landslide / debris flow relies on the criteria for landslide watch and warning by the Korea Forest Service (KFS, 2012). Despite this, it has been found that most incidents of debris flow were caused by rainfall above the level of landslide watch, maximum hourly rainfall, extensive damage was caused even under the watch level. Under these circumstances, we calculated a rainfall triggering index (RTI) using the main factors that trigger debris flow-rainfall, rainfall intensity, and cumulative rainfall-to design a more sophisticated watch / warning criteria than those by the KFS. The RTI was classified into attention, caution, alert, and evacuation, and was assessed through the application of two debris flow incidents that occurred in Umyeon Mountain, Seoul, and Cheongju, Inje, causing serious damage and casualties. Moreover, we reviewed the feasibility of the RTI by comparing it with the KFS's landslide watch / warning criteria (KFS, 2012).

A Study on the Coherence of the Precipitation Simulated by the WRF Model during a Changma Period in 2005 (WRF 모델에서 모의된 2005년 장마 기간 강수의 동조성 연구)

  • Byon, Jae-Young;Won, Hye-Young;Cho, Chun-Ho;Choi, Young-Jean
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • The present study uses the GOES IR brightness temperature to examine the temporal and spatial variability of cloud activity over the region $25^{\circ}N-45^{\circ}N$, $105^{\circ}E-135^{\circ}E$ and analyzes the coherence of eastern Asian summer season rainfall in Weather Research and Forecast (WRF) model. Time-longitude diagram of the time period from June to July 2005 shows a signal of eastward propagation in the WRF model and convective index derived from GOES IR data. The rain streaks in time-latitude diagram reveal coherence during the experiment period. Diurnal and synoptic scales are evident in the power spectrum of the time series of convective index and WRF rainfall. The diurnal cycle of early morning rainfall in the WRF model agrees with GOES IR data in the Korean Peninsula, but the afternoon convection observed by satellite observation in China is not consistent with the WRF rainfall which is represented at the dawn. Although there are errors in strength and timing of convection, the model predicts a coherent tendency of rainfall occurrence during summer season.

Evaluation of Raingauge Network using Area Average Rainfall Estimation and the Estimation Error (면적평균강우량 산정을 통한 강우관측망 평가 및 추정오차)

  • Lee, Ji Ho;Jun, Hwan Don
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.103-112
    • /
    • 2014
  • Area average rainfall estimation is important to determine the exact amount of the available water resources and the essential input data for rainfall-runoff analysis. Like that, the necessary criterion for accurate area average rainfall estimate is the uniform spatial distribution of raingauge network. In this study, we suggest the spatial distribution evaluation methodology of raingauge network to estimate better area average rainfall and after the suggested method is applied to Han River and Geum River basin. The spatial distribution of rainfall network can be quantified by the nearest neighbor index. In order to evaluate the effects of the spatial distribution of rainfall network by each basin, area average rainfall was estimated by arithmetic mean method, the Thiessen's weighting method and estimation theory for 2013's rainfall event, and evaluated the involved errors by each cases. As a result, it can be found that the estimation error at the best basin of spatial distribution was lower than the worst basin of spatial distribution.

Development and Application of Drought Index Based on Accumulative Pattern of Daily Rainfall (일 단위 강수량의 누적 패턴을 이용한 가뭄지수 개발 및 적용)

  • Kwon, Minsung;Park, Dong-Hyeok;Jun, Kyung Soo;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • This study proposed a new drought index considering the accumulative pattern of daily rainfall, i.e., Rainfall Accumulation Drought Index (RADI). The RADI can be easily calculated at daily scale by comparing the long-term averaged cumulative rainfall to the observed cumulative rainfall for a specific duration. This study evaluated the availability of the RADI in the field of monitoring short-term and long-term droughts by investigating the spatial and temporal variability and the recurrence cycle of drought in South Korea. To present the short-term and long-term droughts, the various SPIs with different durations should be used in practice. However, the RADI can present and monitor both short-term and long-term droughts as a single index. By investigating the national average of the RADI, specific drought patterns of 20-year cycle were identified in this study. This study also proposed a five-level drought classification considering occurrence probability that would be a suitable alternative as a drought criterion for drought forecast/response.

Estimation of Rainfall Erosivity in North Korea using Modified Institute of Agricultural Sciences (수정 IAS 지수를 이용한 북한지역의 강우침식인자 추정)

  • Lee, Joon-Hak;Heo, Jun-Haeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1004-1009
    • /
    • 2011
  • Soil erosion in North Korea has been continued to accelerate by deterioration of topographical conditions. However, few studies have been conducted to predict the amount of soil loss in North Korea due to limited data so far. Rainfall erosivity is an important factor to predict the amount of long-term annual soil loss by USLE (universal soil loss equation). The purpose of this study is to investigate rainfall erosivity, which presented the potential risk of soil erosion by water, in North Korea. Annual rainfall erosivities for 27 stations in North Korea for 1983~2010 were calculated using regression models based on modified Institute of Agricultural Sciences (IAS) index in this study. The result showed that annual average rainfall erosivity in North Korea ranged from 2,249 to 7,526 and averaged value was $4,947MJmm\;ha^{-1}\;hr^{-1}\;yr^{-1}$, which corresponded to about 70% of annual average rainfall erosivity in South Korea. The finding was that the potential risk of soil erosion in North Korea has been accelerated by the increase of rainfall erosivity since the late 1990s.