• 제목/요약/키워드: rainfall gauge

검색결과 179건 처리시간 0.026초

레이더 추정강우의 수문학적 활용 (I): 최적 레이더 강우 추정 (Hydrologic Utilization of Radar-Derived Rainfall (I) Optimal Radar Rainfall Estimation)

  • 배덕효;김진훈;윤성심
    • 한국수자원학회논문집
    • /
    • 제38권12호
    • /
    • pp.1039-1049
    • /
    • 2005
  • 본 연구의 목적은 기상 레이더의 수문학적 활용성을 높이고자 최적의 레이더 강우를 추정하기 위해 관악산 레이더 자료를 대상으로 POD 분석기법을 활용하여 지형클러터 및 빔 차폐영역 등을 제거하고 Marshall-Palmer의 Z-R 관계식으로 레이더 강우를 추정한 결과 강우계 관측강우와 비교하여 시$\cdot$공간적으로 과소 모의하는 것으로 나타났다. 이러한 결과를 바탕으로 강우계 관측강우와의 실시간 보정기법을 소양강 유역을 대상으로 적용한 결과 평균 G/R 값은 $0.95\~1.32$로 적정분포를 보이고 평균편차는 $9\~28\%$ 범위로 감소되어 불확실성 또한 감소하는 것으로 나타났다. 한편, 편차가 보정된 최적 레이더 추정강우로 소양강 유역평균 강우량을 산정한 결과 관측강우와 비교하여 매우 잘 일치하는 것으로 나타났다. 따라서 실시간 편차보정 기법은 수문학적 유역평균 강우량 산정시 다소 과소추정되는 레이더 강우정보를 정확하게 보정할 수 있다는 측면에서 그 적용성이 우수한 것으로 판단된다.

가을철 대기환경 중 수용성 이온성분의 침적특성 (Deposition Characteristics of Water-soluble Inorganic Ions in the Iksan Ambient Air during Fall, 2004)

  • 강공언;김남송;전선복
    • 한국환경보건학회지
    • /
    • 제32권4호
    • /
    • pp.359-372
    • /
    • 2006
  • In order to investigate the daily deposition characteristics of water-soluble inorganic components in airborne deposit on the Iksan, deposition samples were collected using a deposition gauge from October 16 to November 1, 2004. Deposition samples were collected using two different sampling gauges, a dry gauge and a wet gauge, respectively. To get wet the bottom of wet gauge during the sampling period, the volume of $30{\sim}50ml$ distilled ionized water was added in a wet gauge before the beginning of each deposition sampling. Deposition samples were collected twice a day and analyzed for inorganic water-soluble anions ($Cl^-,\;{NO_3}^-,\;{SO_4}^{2-}$) and cations (${NH_4}^+,\;Na^+,\;K^+,\;Mg^{2+},\;Ca^{2+}$) using ion chromatography. Qualify control and quality assurance of analytical data were checked by the data obtained from reinjection of standard solution, Dionex cross check standard solutions, and random several deposition samples, and measured data was estimated to be reliable. Considering the deposition sample volume, the sampling time, the surface area of sampling container, and the ion concentration measured, the daily deposition amounts for measured ions were calculated in $mg/m^2$. The total daily deposition amounts of all measured ions for dry and wet gauge were $7.5{\pm}2.8$ and $17.7{\pm}4.2mg/m^2$, respectively. A significant increase in deposition amount during rainfall days was observed for both wet gauge and dry gauge, having no difference of deposition amount between in wet gauge and in dry gauge. The mean deposition of all ions measured in this study were higher in wet gauge than in dry gauge because of the surface difference of the sampling container, especially for ${NH_4}^+\;and\;{SO_4}^{2-}$. The mean deposition amounts of ${NH_4}^+\;and\;{SO_4}^{2-}$ in wet gauge were found to be about 10 times and 3 times higher than those in dry gauge, while the rest of the chemical species were equal or a little higher in wet gauge than in dry gauge. Dominant species in dry gauge were ${NO_3}^-\;and\;Ca^{2+}$, accounting for 21% and 28% of the total ion deposition, whereas those in wet gauge were ${SO_4}^{2-}\;and\;{NH_4}^+$, accounting for 19% and 41% of the total ion deposition, respectively.

19세기 원주감영, 함흥감영, 해주감영 측우기 강우량 복원 (Restoration of 19th-century Chugugi Rainfall Data for Wonju, Hamheung and Haeju, Korea)

  • 김상원;박준상;김진아;홍윤
    • 대기
    • /
    • 제22권1호
    • /
    • pp.129-135
    • /
    • 2012
  • This study restores rainfall measurements taken with the Chugugi (rain gauge) at Wonju, Hamheung, and Haeju from the Deungnok (government records from the Joseon Dynasty). We restored rainfall data corresponding to a total of 9, 13, and 18 years for Wonju, Hamheung, and Haeju, respectively. Based on the restored data, we reconstructed monthly rainfall data. Restoration was most successful for the rainy season months of June, July and August. The restored rainfall data were compared with the summer rainfall data for Seoul as recorded by the Seungjeongwon (Royal Secretariat). In June, the variation in the restored rainfall data was similar to that of the Seungjeongwon data for Seoul. In July and August, however, the variations in the reconstructed data were markedly different from those in the Seoul data (Seungjeongwon). In the case of the worst drought in the summer of 1888, a substantial shortage of rainfall was found in both the Seungjeongwon data for Seoul and the restored data for the three regional locations.

확률 강우량의 변동성 분석 (An Analysis of the variability of rainfall quantile estimates)

  • 정성인;유철상;윤용남
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.256-261
    • /
    • 2004
  • Due to the problems of global warming, the frequency of meteorological extremes such as droughts, floods and the annual rainfall amount are suddenly increasing. Even though the increase of greenhouse gases, for example, is thought to be the main factor for global warming, its impact on global climate has not yet been revealed clearly in rather quantitative manners. Therefore, tile objective of this study is to inquire the change of precipitation condition due to climate change by global warming. In brief, this study want to see its assumption if rainfall quantile estimates are really changing. In order to analyze the temporal change, the rainfall quantile estimates at the Seoul rain gauge stations are estimated for the 21-year data period being moved from 1908 to 2002 with 1-year lag. The main objective of this study is to analyze the variability of rainfall quantile estimates using four methods. Next, The changes in confidence interval of rainfall quantile are evaluated by increasing the data period. It has been found that confidence interval of rainfall quantile estimates is reduced as the data period increases. When the hydraulic structures are to be designed, it is important to select the data size and to re-estimate the flood prevention capacity in existing river systems.

  • PDF

LandScient_EWS: Real-Time Monitoring of Rainfall Thresholds for Landslide Early Warning - A Case Study in the Colombian Andes

  • Roberto J. Marin;Julian Camilo Marin-Sanchez
    • 지질공학
    • /
    • 제34권2호
    • /
    • pp.173-191
    • /
    • 2024
  • Landslides pose significant threats to many countries globally, yet the development and implementation of effective landslide early warning systems (LEWS) remain challenging due to multifaceted complexities spanning scientific, technological, and political domains. Addressing these challenges demands a holistic approach. Technologically, integrating thresholds, such as rainfall thresholds, with real-time data within accessible, open-source software stands as a promising solution for LEWS. This article introduces LandScient_EWS, a PHP-based program tailored to address this need. The software facilitates the comparison of real-time measured data, such as rainfall, with predefined landslide thresholds, enabling precise calculations and graphical representation of real-time landslide advisory levels across diverse spatial scales, including regional, basin, and hillslope levels. To illustrate its efficacy, the program was applied to a case study in Medellin, Colombia, where a rainfall event on August 26, 2008, triggered a shallow landslide. Through pre-defined rainfall intensity and duration thresholds, the software simulated advisory levels during the recorded rainfall event, utilizing data from a rain gauge positioned within a small watershed and a single grid cell (representing a hillslope) within that watershed. By identifying critical conditions that may lead to landslides in real-time scenarios, LandScient_EWS offers a new paradigm for assessing and responding to landslide hazards, thereby improving the efficiency and effectiveness of LEWS. The findings underscore the software's potential to streamline the integration of rainfall thresholds into both existing and future landslide early warning systems.

Hyetograph Model for Reservoir Operation During Flash Flood

  • Lee, Jae-Hyoung;Sonu, Jung-Ho;Shung, Dong-Kug
    • Korean Journal of Hydrosciences
    • /
    • 제3권
    • /
    • pp.31-44
    • /
    • 1992
  • Precise run-off forecasting depends on the ability to predict quantitative rainfall intensity. The purpose of this study is to develop a stochastic model for the shori-term rainfall prediction. It is required for the model to predict rainfall intensities at all the telemetered rain-gauge locations simultaneously. All the model parameters, which are used in this work ; velocity and direction of storm movement, radial spectrum, and dimensionless time distribution of rainfall, are the results of the previous study. We formulated the model and operated it, so that in this study was analyzed particulary the influence of 4 dimensionless time distributions on the prediction and the influence of the model on run-off.

  • PDF

홍수시 저수지운영을 위한 시우량 모형 - Hyetograph model for Reservoir operation during Flash flood

  • 이재형;선우중호;정동국
    • 물과 미래
    • /
    • 제23권3호
    • /
    • pp.341-350
    • /
    • 1990
  • 정확한 유출수문곡선의 예보는 강우강도의 예측능력에 좌우된다. 1시간 정도의 단기 강우예측을 위한 추계학적인 강우모형을 개발하여 제시하는 것이 연구과제이다. 개발하고자 하는 모형은 다지점에서 동시에 강우강도를 예상 또는 예측할 수 있는 능력이 있다. 모형에 필요한 매개변수는 TM자료를 비롯하여 과거에 축적된 자료들로 부터 평가된 값을 이용한다. 모형은 강우진행속도, 환상스팩트럼, 무차원 시간분포 등이 선행연구 결과를 토대로 한다. 선택한 무차원 시간분포가 예측에 미치는 영향과 예측모형이 유출수문곡선에 미치는 영향을 분석한다.

  • PDF

Development of a smart rain gauge system for continuous and accurate observations of light and heavy rainfall

  • Han, Byungjoo;Oh, Yeontaek;Nguyen, Hoang Hai;Jung, Woosung;Shin, Daeyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.334-334
    • /
    • 2022
  • Improvement of old-fashioned rain gauge systems for automatic, timely, continuous, and accurate precipitation observation is highly essential for weather/climate prediction and natural hazards early warning, since the occurrence frequency and intensity of heavy and extreme precipitation events (especially floods) are recently getting more increase and severe worldwide due to climate change. Although rain gauge accuracy of 0.1 mm is recommended by the World Meteorological Organization (WMO), the traditional rain gauges in both weighting and tipping bucket types are often unable to meet that demand due to several existing technical limitations together with higher production and maintenance costs. Therefore, we aim to introduce a newly developed and cost-effective hybrid rain gauge system at 0.1 mm accuracy that combines advantages of weighting and tipping bucket types for continuous, automatic, and accurate precipitation observation, where the errors from long-term load cells and external environmental sources (e.g., winds) can be removed via an automatic drainage system and artificial intelligence-based data quality control procedure. Our rain gauge system consists of an instrument unit for measuring precipitation, a communication unit for transmitting and receiving measured precipitation signals, and a database unit for storing, processing, and analyzing precipitation data. This newly developed rain gauge was designed according to the weather instrument criteria, where precipitation amounts filled into the tipping bucket are measured considering the receiver's diameter, the maximum measurement of precipitation, drainage time, and the conductivity marking. Moreover, it is also designed to transmit the measured precipitation data stored in the PCB through RS232, RS485, and TCP/IP, together with connecting to the data logger to enable data collection and analysis based on user needs. Preliminary results from a comparison with an existing 1.0-mm tipping bucket rain gauge indicated that our developed rain gauge has an excellent performance in continuous precipitation observation with higher measurement accuracy, more correct precipitation days observed (120 days), and a lower error of roughly 27 mm occurred during the measurement period.

  • PDF

통계적 기법을 이용한 국지성집중호우의 이동경로 분석 (Rainstorm Tracking Using Statistical Analysis Method)

  • 김수영;남우성;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.194-198
    • /
    • 2005
  • Although the rainstorm causes local damage on large scale, it is difficult to predict the movement of the rainstorm exactly. In order to reduce the rainstorm damage of the rainstorm, it is necessary to analyze the path of the rainstorm using various statistical methods. In addition, efficient time interval of rainfall observation for the analysis of the rainstorm movement can be derived by applying various statistical methods to rainfall data. In this study, the rainstorm tracking using statistical method is performed for various types of rainfall data. For the tracking of the rainstorm, the methods of temporal distribution, inclined Plane equations, and cross correlation were applied for various types of data including electromagnetic rainfall gauge data and AWS data. The speed and direction of each method were compared with those of real rainfall movement. In addition, the effective time interval of rainfall observation for the analysis of the rainstorm movement was also investigated for the selected time intervals 10, 20, 30, 40, 50, and 60 minutes. As a result, the absolute relative errors of the method of inclined plane equations are smaller than those of other methods in case of electromagnetic rainfall gauges data. The absolute relative errors of the method of cross correlation are smaller than those of other methods in case of AWS data. The absolute relative errors of 30 minutes or less than 30 minutes are smaller than those of other time intervals.

  • PDF

조선시대 측우기 등장과 강우량 관측망에 대한 역사적 고찰 (A Historical Review on the Introduction of Chugugi and the Rainfall Observation Network during the Joseon Dynasty)

  • 조하만;김상원;전영신;박혜영;강우정
    • 대기
    • /
    • 제25권4호
    • /
    • pp.719-734
    • /
    • 2015
  • Korea is one of the country with the world's oldest meteorological observation records. Starting with first meteorological record of fog in Goguryeo in the year of 34 BC, Korea had left a great deal of quantitative observation records, from the Three Kingdoms Period to Goryeo to Joseon. During the Joseon Dynasty, with a great attention by kings, efforts were particularly made to measure rainfall in a systematic and scientific manner. In the 23rd year of King Sejong (1441), the world's first rain gauge called "Chugugi" was invented; in the following year (1442), a nationwide rainfall observation network was established. The King Sejong distributed Chugugi to 350 observation stations throughout the state, even to small towns and villages, for measuring and recording rainfall. The rainfall observation using Chugugi, initiated by King Sejong, had been in place for about 150 years, but halted during national disturbances such as Japanese invasion of Korea in 1592. Since then, the observation had been forgotten for a long time until the rainfall observation by Chugugi was resumed in the 48th year of King Yeongjo (1770). King Yeongjo adopted most of the existing observation system established by King Sejong, including the size of Chugugi and observation rules. He, however, significantly reduced the number of Chugugi observation stations to 14, and commanded the 352 local authorities such as Bu, Gun, Hyeon to conduct "Wootaek", a method of measuring how far the moisture had absorbed into the soil when it rains. Later on, six more Chugugi stations were established. If the number of stations of Chugugi and Wootaek are combined together, the total number of rainfall observation station in the late period of Joseon Dynasty was 372. The rainfall observation with Chugugi during the Joseon Dynasty is of significance and excellence in three aspects: 1) the standard size of Chugugi was so scientifically designed that it is as great as today's modern rain gauge; 2) rainfall was precisely measured, even with unit of Bun (2 mm); and 3) the observation network was distributed on a nationwide basis.