• Title/Summary/Keyword: rainfall characteristic

Search Result 256, Processing Time 0.022 seconds

Characteristic Analysis of the Coefficient of Initial Abstraction and Development of its Formular in the Rural Watersheds - for the Small-Medium Watersheds in the Geum and Sapkyo River - (농촌유역에서의 초기강우손실 특성분석과 계수 산정식 개발 - 금강.삽교천 중소유역을 중심으로-)

  • Kim, Tai-Cheol;Lee, Jeong-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.6
    • /
    • pp.3-12
    • /
    • 2008
  • It is important to estimate accurate effective rainfall to analyse flood flow and long-term runoff for the rational planning, design, and management of water resource. The initial abstraction is also important to estimate effective rainfall. The Soil Conservation Service (SCS) has developed a procedure and it has been most commonly applied to estimate effective rainfall. But the SCS method still has weak points, because of unnatural assumptions such as antecedent moisture conditions and initial abstraction. The coefficient of initial abstraction(K) is depending on the soil moisture condition and antecedent rainfall. The maximum storage capacity of Umax which is calibrated by stream flow data in the proposed watershed was derived from the DAWAST(DAily WAtershed STreamflow) model. The values of K obtained from 69 storm events at the five watersheds are ranging from 0.133 to 0.365 and its mean value is 0.207. Effective rainfall could be estimated more reasonably by introducing new concept of initial abstraction. The equation of $K=0.076Sa^{0.255}$ was recommended instead of 0.2 and it could be applicable to the small-medium rural watersheds.

The Quantative Homogeneity Analysis of Seoul Rainfall (서울지점 강우자료의 정량적 동질성 분석)

  • Hwang, Seok-Hwan;Kim, Joong-Hoon;Yoo, Chul-Sang;Yoo, Do-Guen
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.29-35
    • /
    • 2009
  • In this study, quantitative homogeneity analysis was performed between rainfall observation data set of Chukwooki(CWK) and rainfall observation data set of modern rain gage(MRG) using statistical methods such as basic statistics, K-S test and Boxplots. To analyze the homogeneities of CWK and MRG four rainfall characteristic series such as monthly rainfall, the ratio of maximum daily rainfall to monthly rainfall, number of rainy days for each month, and the ratio of monthly rainfall to numbers of rainy days are made, and the homogeneity tests using two sample K-S test and quantitative comparisons were performed. The test results showed that observation precisions between CWK and MRG of original data set(M00) were differed because M00 clearly showed the statistical significances on differences of numbers of monthly rainy days of CWK and MRG. But, rainfall showed a little differences which were not significant between CWK and MRG.

Analysis of Nonpoint Sources Runoff Characteristic for the Vineyard Areas (포도밭에 대한 비점오염원 유출특성 해석)

  • Yoon, Young-Sam;Lee, Sang-Hyeup;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.361-372
    • /
    • 2011
  • This study analyzed the characteristics of stormwater runoff by rainfall type in orchard areas for two years. Effluents were monitored to calculate the EMCs and runoff loads of each pollutant. The runoff characteristics for nonpoint sources from vineyards were also inspected based on independent variables that affect runoff such as rainfall and rainfall intensity. The average runoff loads of each pollutant from vineyard_A and vineyard_B were found as follows: BOD 39.13 mg/$m^2$, COD 112.13 mg/$m^2$, TOC 54.98 mg/$m^2$, SS 1,681.8 mg/$m^2$, TN 18.29 mg/$m^2$, and TP 4.06 mg/$m^2$, which indicates that the COD's runoff load was especially high. The average EMCs from vineyard_A and vineyard_B, which represents the quality of rainfall effluent, were also analyzed: BOD 3.5 mg/L, COD 11.5 mg/L, TOC 5.2 mg/L, SS 211.7 mg/L, TN 1.774 mg/L, and TP 0.324 mg/L. This suggested that the COD, as an indicator of organic pollutants, is high in terms of EMCs as well. As rainfall increased, the EMCs of BOD, COD, TOC and SS kept turning upward. At a point, however, the high rainfall brought about dilution effects and began to push down the EMCs. Higher rainfall intensities led to the increase in the EMCs that displays the convergence of rainfall. Low rainfall intensities also raised pollutant concentrations, although the concentrations themselves were slightly different among pollutants.

Development of methodology for daily rainfall simulation considering distribution of rainfall events in each duration (강우사상의 지속기간별 분포 특성을 고려한 일강우 모의 기법 개발)

  • Jung, Jaewon;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.141-148
    • /
    • 2019
  • When simulating the daily rainfall amount by existing Markov Chain model, it is general to simulate the rainfall occurrence and to estimate the rainfall amount randomly from the distribution which is similar to the daily rainfall distribution characteristic using Monte Carlo simulation. At this time, there is a limitation that the characteristics of rainfall intensity and distribution by time according to the rainfall duration are not reflected in the results. In this study, 1-day, 2-day, 3-day, 4-day rainfall event are classified, and the rainfall amount is estimated by rainfall duration. In other words, the distributions of the total amount of rainfall event by the duration are set using the Kernel Density Estimation (KDE), the daily rainfall in each day are estimated from the distribution of each duration. Total rainfall amount determined for each event are divided into each daily rainfall considering the type of daily distribution of the rainfall event which has most similar rainfall amount of the observed rainfall using the k-Nearest Neighbor algorithm (KNN). This study is to develop the limitation of the existing rainfall estimation method, and it is expected that this results can use for the future rainfall estimation and as the primary data in water resource design.

Studies on the Rainfall Characteristics in Chungnam Region(I) Probable Rainfall Intensity in Short Duration in Daejeon Area (충남지방(忠南地方)의 강우특성(降雨特性)에 관(關)한 연구(硏究)(I) 대전지역(大田地域)의 단시간(短時間) 확률강우강도(確率降雨强度))

  • Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.82-89
    • /
    • 1981
  • The characteristic of rainfall intensity in short duration is very important to calculate short-term runoff in small watershed by Rational method. Therefore, the purpose of this study is to derive the most proper formula on the probable rainfall intensity in each return period in Daejeon area. And the results of this study could be utilized for the design of drainage-structures in small watershed, drainage system in urban area and flood control in small river basin. The result s of this study are summerized as follows. 1. Gumbel-Chow method which shows the mean value was chosen to calculate the probable rainfall in tensity in each return periods. 2. According to statistical judgement, probable rainfall intensity formula of Japanese type($I={\frac{a}{t+b}}$, see Table-6) shows the most proper one among other types of formula like Talbot type, Sherman type and Characteristic coefficient method. Probable rainfall in tensity value of Japanese type in Daejeon area shows well coincidence with the one obtained by applying prof. Park's n-coefficient to Monobe formula $I=({\frac{R_{24}}{24}})({\frac{T}{t}})^{0.5486}$. On the other hand, the value by Monobe formula with n-coefficient of 2/3 which is being used as a disign criterison by M. O. C. shows large difference from the fore-mentioned results (see Table-7). Consequently the value by Monobe formula might be judged that it is too much overestimated one as a design criterion. 3. Short-term runoff in small water shed could be calculated more reasonably in Daejeon area through this probable rainfall in tensity formula.

  • PDF

Influence of Estimation of Hydraulic Conductivity Function on Rainfall Infiltration into Unsaturated Soil Slope (투수계수함수의 추정이 불포화 토사 사면의 강우 침투거동에 미치는 영향)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.5-22
    • /
    • 2017
  • The procedure that combines the result of infiltration analysis into stability analysis based on the limit equilibrium method is widely used to evaluate the impact of rainfall infiltration on slope stability. Accurate prediction of rainfall infiltration is essential to the prediction of landslides caused by rainfall, requires to obtain accurate unsaturated hydraulic properties of the soil. Among the unsaturated hydraulic characteristics of the soil, the importance of the soil-water characteristic curve describing the retained water characteristics of the soil is relatively well known and the measurement by test method to obtain the SWCC is gradually increasing. However, it takes a lot of time and expenses to experimentally measure the unsaturated conductivity characteristics of the soil. Therefore, it is common practice to estimate the hydraulic conductivity function from the SWCC. Although it is widely known that the SWCC has a great influence on rainfall infiltration, studies on the effect of the hydraulic conductivity function estimated from the SWCC on rainfall infiltration are very limited. In this study, we explained how the estimation model of the hydraulic conductivity function affects rainfall infiltration and slope stability analysis. To this end, one-dimensional infiltration analysis and slope stability analysis were conducted by using the data on the SWCC of weathered granite soil widely distributed in Korea. The applicability of each estimation model is discussed through review of the analysis results.

Analysis on Design Parameters of Small Hydropower Sites with Rainfall Conditions (강우상태에 따른 소수력발전입지의 설계변수 특성 분석)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.59-64
    • /
    • 2012
  • The correlation between hydrologic performance design parameters of small hydro power(SHP) sites and rainfall condition have been analyzed for major river systems. The model, which can predict flow duration characteristic of stream, was developed to estimate the inflow caused from rainfall. And another model to predict hydrologic performance for SHP plants is established. Based on the models developed in this study, the hydrologic performance characteristics for SHP sites have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems. It was found that the hydrologic performance design parameters such as specific design flowrate and specific output were affected by rainfall condition in basin area of SHP sites.

Application of Bias-Correction and Stochastic Analogue Method (BCSA) to Statistically Downscale Daily Precipitation over South Korea (남한지역 일단위 강우량 공간상세화를 위한 BCSA 기법 적용성 검토)

  • Hwang, Syewoon;Jung, Imgook;Kim, Siho;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.49-60
    • /
    • 2021
  • BCSA (Bias-Correction and Stochastic Analog) is a statistical downscaling technique designed to effectively correct the systematic errors of GCM (General Circulation Model) output and reproduce basic statistics and spatial variability of the observed precipitation filed. In this study, the applicability of BCSA was evaluated using the ASOS observation data over South Korea, which belongs to the monsoon climatic zone with large spatial variability of rainfall and different rainfall characteristics. The results presented the reproducibility of temporal and spatial variability of daily precipitation in various manners. As a result of comparing the spatial correlation with the observation data, it was found that the reproducibility of various climate indices including the average spatial correlation (variability) of rainfall events in South Korea was superior to the raw GCM output. In addition, the needs of future related studies to improve BCSA, such as supplementing algorithms to reduce calculation time, enhancing reproducibility of temporal rainfall patterns, and evaluating applicability to other meteorological factors, were pointed out. The results of this study can be used as the logical background for applying BCSA for reproducing spatial details of the rainfall characteristic over the Korean Peninsula.

Comparison of Bayesian Methods for Estimating Parameters and Uncertainties of Probability Rainfall Distribution (확률강우분포의 매개변수 및 불확실성 추정을 위한 베이지안 기법의 비교)

  • Seo, Youngmin;Park, Jaeho;Choi, Yunyoung
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.19-35
    • /
    • 2019
  • This study investigates the performance of four Bayesian methods, Random Walk Metropolis (RWM), Hit-And-Run Metropolis (HARM), Adaptive Mixture Metropolis (AMM), and Population Monte Carlo (PMC), for estimating the parameters and uncertainties of probability rainfall distribution, and the results are compared with those of conventional parameter estimation methods; namely, the Method Of Moment (MOM), Maximum Likelihood Method (MLM), and Probability Weighted Method (PWM). As a result, Bayesian methods yield similar or slightly better results in parameter estimations compared with conventional methods. In particular, PMC can reduce parameter uncertainty greatly compared with RWM, HARM, and AMM methods although the Bayesian methods produce similar results in parameter estimations. Overall, the Bayesian methods produce better accuracy for scale parameters compared with the conventional methods and this characteristic improves the accuracy of probability rainfall. Therefore, Bayesian methods can be effective tools for estimating the parameters and uncertainties of probability rainfall distribution in hydrological practices, flood risk assessment, and decision-making support.