• Title/Summary/Keyword: rainfall break duration

Search Result 2, Processing Time 0.015 seconds

Analysis of Rainfall Infiltration Velocity in Unsaturated Soils Under Both Continuous and Repeated Rainfall Conditions by an Unsaturated Soil Column Test (불포화토 칼럼시험을 통한 연속강우와 반복강우의 강우침투속도 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.133-145
    • /
    • 2011
  • Unsaturated soil column tests were performed for weathered gneiss soil and weathered granite soil to assess the relationship between infiltration velocity and rainfall condition for different rainfall durations and for multiple rainfall events separated by dry periods of various lengths (herein, 'rainfall break duration'). The volumetric water content was measured using TDR (Time Domain Reflectometry) sensors at regular time intervals. For the column tests, rainfall intensity was 20 mm/h and we varied the rainfall duration and rainfall break duration. The unit weight of weathered gneiss soil was designed 1.21 $g/cm^3$, which is lower than the in situ unit weight without overflow in the column. The in situ unit weight for weathered granite soil was designed 1.35 $g/cm^3$. The initial infiltration velocity of precipitation for the two weathered soils under total amount of rainfall as much as 200 mm conditions was $2.090{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.692{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively. These rates are higher than the repeated-infiltration velocities of precipitation under total amount of rainfall as much as 100 mm conditions ($1.309{\times}10^{-3}$ to $1.871{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $1.581{\times}10^{-3}$ cm/s, respectively), because the amount of precipitation under 200 mm conditions is more than that under 100 mm conditions. The repeated-infiltration velocities of weathered gneiss soil and weathered granite soil were $1.309{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively, being higher than the first-infiltration velocities ($1.307{\times}10^{-2}$ to $1.718{\times}10^{-2}$ cm/s and $1.789{\times}10^{-2}$ to $2.070{\times}10^{-2}$ cm/s, respectively). The results reflect the effect of reduced matric suction due to a reduction in the amount of air in the soil.

Comparison of Growth Period and Local Climate for 'Hongro' Apple Orchards Located at Different Altitudes in Jangsu-Gun (장수군의 해발고도별 '홍로' 사과원의 미기상 및 생육기 비교)

  • Song, Ju-Hee;Seo, Byung Sun;Choi, Dong Geun;Choi, In Myung;Kang, In-Kyu;Guak, Sunghee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study was conducted to compare the local climate conditions and growth periods for the apple (Malus domestica 'Borkh') orchards at different altitudes (330, 500, and 670 m) in Jangsu-Gun, Korea. Observation data for the growth period show that the monthly mean air temperatures at the 'Hongro' apple orchard sites decrease with height at the rate of 1.0 to $3.0^{\circ}C$/100 m. The monthly minimum temperatures in April (blooming period for 'Hongro' apple) were 4.3, 2.9, and $0.4^{\circ}C$ at 330, 500, and 670 m, respectively. The monthly mean temperatures in September (i.e., the coloration and maturation period) were 20.6, 18.7, and $14.5^{\circ}C$, respectively. The annual precipitation range varied from 1,234 to 1,439 mm, which tended to increase with height. The heavy rainfall occurred in summer (June to August) and amounted to 827-933 mm. No significant differences in the duration of sunshine were observed amongst the orchards at three different altitudes. The earliest bud break was observed at the 330 m altitude (18 March 2009), which was 4 and 11 days earlier in comparison to those at 500 and 670 m, respectively. The time of full bloom at 330 m was 12 days ahead of that at 670 m. The optimal maturation of fruit (based on skin redness > 80%) was observed between 7 and 10 September at 330 m, 15 and 18 September at 500 m, and 21 and 23 September at 670 m.