• 제목/요약/키워드: rain type

검색결과 255건 처리시간 0.082초

비가림하우스 유형별 대추의 생육 및 과실 특성 (Growth and Fruit Characteristics of Zyziphus jujuba Mill by the Types of RainShelter House)

  • 이경희;박희순;오하경;이종원;강효중;이성균;신현만
    • 한국약용작물학회지
    • /
    • 제26권6호
    • /
    • pp.477-481
    • /
    • 2018
  • Background: Recently, jujube (Zizyphus jujuba Mill.) has been attracting attention as a fruit, and its cultivation in rain shelter house is increasing to produce the high quality fresh jujube. This study was carried out to investigate the growth and fruit characteristics of jujube according to the types of rain shelter house. Methods and Results: The characteristics of 5-year-old Bokjo cultivar cultivated in 3 types of rain shelter house, multi span rain shelter house with roof vent (Type I), single span house with a column in the center and roof vent (Type II) and single span house with a column in the center and without roof vent (Type III), and open field were examined. The sprouting and blooming period were different among the types of rain shelter house. The diameter of main stem was higher in rain shelter houses than in the open field. There was no a significant difference in fruit number per leaf stem among the types of cultivation. The incidence of fruit cracking in open field cultivation which was 51.2% was much higher than that in Type I 21.6%, Type II 19.3%, and Type III 25.5%. The fruit size and weight in rain shelter houses, especially in Type III rain shelter house were higher than those in the open field and the soluble solids content of fruit in Type I and Type II was higher than in Type III rain shelter house and the open field. Conclusions: The results show that the growth and fruit quality of jujube were improved by cultivation in rain shelter house, and affected by the types of rain shelter house.

비가림시설의 효율적 형태 개발에 관한 기초 연구 (A Fundamental Study on the Development of Highly Efficient Models of Rain Shelter)

  • 손정익;김문기;권영삼;남상운;윤남균
    • 생물환경조절학회지
    • /
    • 제4권1호
    • /
    • pp.32-42
    • /
    • 1995
  • 1. 시설형태별 온도분포는 Type 1의 경우 지붕의 환기구가 없기 때문에 중력환기는 거의 일어나지 않고, 풍력환기에만 의존하게 되므로 풍속이 약한 경우는 온도가 상승하였다. Type 2 및 Type 3는 지붕의 환기구를 통하여 중력환기가 일어나기 때문에 대체로 온도 분포도 균일한 편으로 나타났다. 2. 시설형태별 평면 광분포는 Type 1가 가장 높고 Type 2, Type 3순으로 나타났다. 즉 일사투과율에 의한 지면 일사 도달율과 직접적으로 관련되기 때문에 Type 1, Type 2, Type 3순으로 지면온도 상승에 영향을 주었다. 3. 환기모델과 열수지 모델을 도입하여 환기량 및 실내온도 변화를 구한 결과, 시설형태별 풍속의 변화에 따른 내외기온차 변화는 Type 1이 가장 크고 Type 2, Type 3순이었다. Type 1의 경우 다른 형태에 비하여 풍속이 1 ㎧로 증가하면 급격히 내외기온차가 감소하였다. 4. 실측치를 사용하여 모델에 의한 풍속변화에 따른 환기량의 변화를 추정한 결과, Type 3 및 Type 2가 상대적으로 Type 1보다 낮은 경향을 나타냈다. 5. 전체적으로 개량형인 Type 2 및 Type 3은 관행형인 Type 1보다 효율적이라고 판단된다. 특히, 성력화의 차원에서 보면 Type 3이 Type 2보다 월등히 우수하기 때문에 자연적인 강우차단 능력이 보장된다면 Type 3이 Type 2보다 효율적이라고 사료된다.

  • PDF

영동과 영서 호우의 특성 비교 (Comparison of the Properties of Yeongdong and Yeongseo Heavy Rain)

  • 권태영;김재식;김병곤
    • 대기
    • /
    • 제23권3호
    • /
    • pp.245-264
    • /
    • 2013
  • Heavy rain over the Gangwon region has distinct characteristics in the temporal and spatial distribution of rainfall, most of which are concentrated on a very short period of time and either part of Yeongdong and Yeongseo regions. According to its regional distribution, heavy rain events over the Gangwon region may be classified into Yeongdong and Yeongseo heavy rain in which rainfalls of more than 110 mm $(6 hrs)^{-1}$ (heavy rain warning) have been observed in at least one of the weather stations over only Yeongdong or Yeongseo region, but over the other region the rainfalls are less than 70 mm $(6 hrs)^{-1}$ (heavy rain advisory). To differentiate between Yeongdong and Yeongseo heavy rain, 9 cases for Yeongdong heavy rain and 8 cases for Yeongseo heavy rain are examined on their synoptic and mesoscale environments using some meteorological parameters and ingredients. In addition, 8 cases are examined in which heavy rain warning or advisory are issued in both Yeongdong and Yeongseo regions. The cases for each heavy rain type have shown largely similar features in some meteorological parameters and ingredients. Based on an ingredient analysis, there are three common and basic ingredients for the three heavy rain types: instability, moisture, and lift. However, it is found that the distinct and important process producing strong upward vertical motions may discriminate among three heavy rain types very well. Yeongdong heavy rain is characterized by strong orographic lifting, Yeongseo heavy rain by high instability (high CAPE), and heavy rain over both regions by strong synoptic-scale ascent (strong 850 hPa Q-Vector convergence, diagnostics for ascent). These ingredients and diagnostics for the ingredients can be used to forecasting the potential for regional heavy rain. And also by knowing which of ingredients is important for each heavy rain type, forecasters can concentrate on only a few ingredients from numerous diagnostic and prognostic products for forecasting heavy rain events.

Development of standard calibration equipment for the rain gauges

  • Shin, Gang-Wook;Hong, Sung-Taek;Lee, Dong-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2468-2473
    • /
    • 2005
  • Because the rain gauges of tipping bucket type can easily use the digital signal, the rain gauges are widely used for the meteorological observation. In general, the resolution of rain gauges of tipping bucket type can be categorized by the 0.1mm, 0.5mm, and 1.0mm classes. But, the error of the tipping bucket rain gauges is made by the intensity of rainfalls and is expected to make the standard calibration method for error measurement. Thus, we developed the hardware of standard calibration facility for rain gauges by weighting measurement method and proposed the standard procedure by rainfall intensity in this study Also, we calculated the error for the rainfall intensity and obtained useful result through the proposed calibration method.

  • PDF

질량측정에 의한 우량계 표준교정시스템 개발 (Development of Standard Calibration System for the Rain Gauges by Weighting Method)

  • 신강욱;홍성택
    • 제어로봇시스템학회논문지
    • /
    • 제12권8호
    • /
    • pp.818-823
    • /
    • 2006
  • Because the rain gauges of tipping bucket type can easily use the digital signal, the rain gauges are widely used for the meteorological observation. In general, the resolution of rain gauges of tipping bucket type can be categorized by the 0.1mm, 0.5mm, and 1.0mm classes. But, the error of the tipping bucket rain gauges is made by the intensity of rainfalls and is expected to make the standard calibration method for error measurement. Thus, we developed the hardware of standard calibration facility for rain gauges by weighting measurement method and proposed the standard procedure by rainfall intensity in this study Also, we calculated the uncertainty for the rainfall intensity and obtained useful result through the proposed calibration method.

Three Cases with the Multiple Occurrences of Freezing Rain in One Day in Korea (12 January 2006; 11 January 2008; and 22 February 2009)

  • Park, Chang-Kyun;Byun, Hi-Ryong
    • 대기
    • /
    • 제25권1호
    • /
    • pp.31-49
    • /
    • 2015
  • From the hourly data of 75 Korean weather stations over a 12-year period (2001~2012), this study has chosen three cases (January 12, 2006; January 11, 2008; and February 22, 2009) of multiple freezing rains and investigated the atmospheric circulations that seemed to cause the events. As a result, the receding high pressure type (2006), prevailing high pressure type (2008), and warm front type (2009) are confirmed as synoptic patterns. In all three cases, freezing rain was found in regions with a strong ascending current near the end point of a low-level jet that carried the warm humid air from low latitudes. The strong ascending current resulted from lower-level convergence and upper-level divergence. In 2006 and 2009, the melting process was confirmed. In 2008, the supercooled warm rain process (SWRP) was confirmed. In contrast to existing SWRP theory, it was found that the cool air produced at the middle atmosphere and near the earth's surface led to the formation of freezing rain. The sources of this cool air were supposed to be the evaporative latent heat and the cold advection coming from the northeast. On the other hand, a special case was detected, in which the freezing rain occurred when both the soil surface temperature and surface air temperature were above $0^{\circ}C$. The thickness distributions related to freezing rain in Korea were found to be similar to those in North America. A P-type nomogram was considered for freezing rain forecasting; however, it was not relevant enough to Korea, and few modifications were needed.

자연환기용 공장창호의 빗물유입 저감대책에 관한 실험적 연구 (Experimental study on reduction in rain water penetration through industrial windows used for natural ventilation)

  • 박승욱;김태형;하현철;허영빈
    • 한국산업보건학회지
    • /
    • 제20권3호
    • /
    • pp.175-183
    • /
    • 2010
  • Windows are widely used for natural ventilation of the various buildings. Especially high level windows as a part of industrial ventilation systems, play a crucial role in natural ventilation. Compared to mechanical ventilation system, natural ventilation has the advantage of lower installation and operating costs. In general, high level windows for industrial buildings have three types; louver type, 45$^{\circ}$ open type and 90$^{\circ}$ open type. Based on previous studies, it was found that the louver type and 45$^{\circ}$ open type are very effective in reducing rainwater penetration, but they did not have enough ventilation efficiencies. Preliminary tests were performed with the various types of windows. It was found that a 90$^{\circ}$ open double layer type window was the best among those which tested in our preliminary tests. Simulated rain was used to estimate the amount of rain penetrated through windows and to observe the paths of rain penetration. Various 90$^{\circ}$ open windows were tested to find the windows with minimum rain penetration and maximum ventilation efficiency.

RAINFALL ESTIMATION OVER THE TAIWAN ISLAND FROM TRMM/TMI DATA DURING THE TYPHOON SEASON

  • Chen, W-J;Tsai, M-D;Wang, J-L;Liu, G-R;Hu, J-C;Li, C-C
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.930-933
    • /
    • 2006
  • A new algorithm for satellite microwave rainfall retrievals over the land of Taiwan using TMI (TRMM Microwave Imager) data on board TRMM (Tropical Rainfall Measuring Mission) satellite is described in this study. The scattering index method (Grody, 1991) was accepted to develop a rainfall estimation algorithm and the measurements from Automatic Rainfall and Meteorological Telemetry System (ARMTS) were employed to evaluate the satellite rainfall retrievals. Based on the standard products of 2A25 derived from TRMM/PR data, the rainfall areas over Taiwan were divided into convective rainfall area and stratiform rainfall areas with/without bright band. The results of rainfall estimation from the division of rain type are compared with those without the division of rain type. It is shown that the mean rainfall difference for the convective rain type is reduced from -6.2mm/hr to 1.7mm/hr and for the stratiform rain type with bright band is decreased from 10.7 mm/hr to 2.1mm/hr. But it seems not significant improvement for the stratiform rain type without bright band.

  • PDF

강우강도에 따른 전도형 우량계의 오차특성 분석 (The Error Analysis of the Rain-Gauges typed of Tipping Bucket according to Rainfall Intensity)

  • 신강욱;홍성택;이동근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2507-2509
    • /
    • 2005
  • Because the rain gauges of tipping bucket type can easily use the digital signal, the rain gauges are widely used for the meteorological observation. In general, the resolution of rain gauges of tipping bucket type can be categorized by the 0.1mm, 0.5mm, and 1.0mm classes. But, the error of the tipping bucket rain gauges is made by the intensity of rainfalls and is expected to make the standard calibration method for error measurement. Thus, we developed the hardware of standard calibration facility for rain gauges by weighting measurement method and proposed the standard procedure by rainfall intensity in this study. Also, we calculated the error for the rainfall intensity and obtained useful result through the proposed calibration method.

  • PDF

Development of a smart rain gauge system for continuous and accurate observations of light and heavy rainfall

  • Han, Byungjoo;Oh, Yeontaek;Nguyen, Hoang Hai;Jung, Woosung;Shin, Daeyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.334-334
    • /
    • 2022
  • Improvement of old-fashioned rain gauge systems for automatic, timely, continuous, and accurate precipitation observation is highly essential for weather/climate prediction and natural hazards early warning, since the occurrence frequency and intensity of heavy and extreme precipitation events (especially floods) are recently getting more increase and severe worldwide due to climate change. Although rain gauge accuracy of 0.1 mm is recommended by the World Meteorological Organization (WMO), the traditional rain gauges in both weighting and tipping bucket types are often unable to meet that demand due to several existing technical limitations together with higher production and maintenance costs. Therefore, we aim to introduce a newly developed and cost-effective hybrid rain gauge system at 0.1 mm accuracy that combines advantages of weighting and tipping bucket types for continuous, automatic, and accurate precipitation observation, where the errors from long-term load cells and external environmental sources (e.g., winds) can be removed via an automatic drainage system and artificial intelligence-based data quality control procedure. Our rain gauge system consists of an instrument unit for measuring precipitation, a communication unit for transmitting and receiving measured precipitation signals, and a database unit for storing, processing, and analyzing precipitation data. This newly developed rain gauge was designed according to the weather instrument criteria, where precipitation amounts filled into the tipping bucket are measured considering the receiver's diameter, the maximum measurement of precipitation, drainage time, and the conductivity marking. Moreover, it is also designed to transmit the measured precipitation data stored in the PCB through RS232, RS485, and TCP/IP, together with connecting to the data logger to enable data collection and analysis based on user needs. Preliminary results from a comparison with an existing 1.0-mm tipping bucket rain gauge indicated that our developed rain gauge has an excellent performance in continuous precipitation observation with higher measurement accuracy, more correct precipitation days observed (120 days), and a lower error of roughly 27 mm occurred during the measurement period.

  • PDF