• Title/Summary/Keyword: rain rate

Search Result 367, Processing Time 0.025 seconds

The Pattern of Seed Rain in the Broadleaved-Korean Pine Mixed Forest of Xiaoxing'an Mountains, China

  • Jin, Guangze;Xie, Xingci;Tian, Yueying;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.621-627
    • /
    • 2006
  • This study was conducted to understand the pattern and characteristics of seed rain in the broadleaved-Korean pine mixed forest. We established 287 $0.5m^2$ circular seed traps and collected and identified fallen seeds in the traps every two weeks in $150m{\times}150m$ sample plot of the permanent nine hectare of experimental plot in 2005. The overall average density of seed rain was $864.2/m^2$. The seeds of Betula costata Betula costata had the highest number of fallen seeds as $676.0/m^2$ (78.2%), followed by Abies nephrolepis as $57.5/m^2$, B. platyphylla as $37.9/m^2$, Tilia amurensis as $32.2/m^2$, Acer ukurunduense as $17.0/m^2$, A. tegmentosum $14.8/m^2$, and so on. Pinus koraiensis was recorded only $2.5/m^2$ of fallen seeds mainly owing of Korean pine had low rate of purity due to the animal and microbiological predation. Most of seed dispersal have started from the middle to late August and come to an end on the middle of November. The peak time of seed dispersal varied depending on the species. The rate of pure seed by dispersal time varied according to the species, thereupon the aspect of predation and the rate of blasted seed which had influence on the rate of purity also varied according to the species. The density of Korean pine seed rain in the forest gap was significantly different at $P{\leq}0.05$ from in the closed canopy. But the other species had no difference among canopy coverage.

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

Environmental Changes of the Rivers in Taegu Area after a Heavy Rain (대구지방 하천의 집중 강우후의 수계환경의 변화)

  • Lyu, Seung-Won;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.6 no.2
    • /
    • pp.81-89
    • /
    • 1983
  • The change of environmental factors with flow rates were studied quantitatively for two rivers, the Nakdong River and the Sin stream, which have different basins in ecosystem structures, during short period after a heavy rain. In the Nakdong River, transparency, DO, alkalinity and hardness were negatively correlated with the flow rate by logarithmic function, but the concentration of SiO2 was relatively constant regardless of the flow chage. In the Sin stream, transparency, alkalinity, hardness and the concentration of NH3-N, NO2-N and SO4= showed negative correlation with the flow rate by logarithmic function. The ratios of maximum to minimum values for aquatic environmental factors during the samller than that for flow rate in the respective rivers (28 in the Nakdong R.; 50 in the Sin S.). Immediately after the heavy rain, the concentrations of NO2-N, NH3-N and PO4-P in the Sin stream were 8, 6 and 1 times as high as those in the Nakdong River, respectively, but in the stable flow state, those became 94, 25 and more than 10 times, respectively. The load for most of the dissolved environmental constituents changed similarly to the flow rate in both rivers. It is notable that, at the stable flow state, the loads for NH3-N (59g/sec) and NO2-N (3.3g/sec) in the Sin stream were 4.3 and 1.3 times as high as those in the Nakdong River.

  • PDF

Effect of Simulated Acid Rain on Germination, Growth, Acid Buffering Capacity and Nutrient Leaching in Impatiens balsamina L. and Tagetes patula L. (산성비가 봉선화(Impatiens balsamina L.) 및 만수국(Tagetes patula L.)의 발아, 생장, 완충능력 및 양료용탈에 미치는 영향)

  • 김학윤;이인중;신동현;김길웅;조문수
    • Journal of Life Science
    • /
    • v.10 no.6
    • /
    • pp.598-604
    • /
    • 2000
  • This study was conducted to investigate the effect of simulated acid rain (SAR) on germination, growth, acid buffering capacity and nutrient leaching in Impatiens balsamina L. and Tagetes patula L.. In both species, germination was not inhibited at pH 4.0, but the germination rate decreased at the lower pH of 3.0, showing higher rate in Inpatiens balsamina L. than Tagetes patula L.. As the pH decreases, the growth of radicle was markedly decreased than that of hypocotyl in both species. The plant height, root length, leaf area, total dry weight, relative growth rate and net assimilation rate were inhibited by SAR. The acid buffering capacity in the leaves were increased at pH 4.0, on the other hand, it was shown a tendency to decrease at pH 2.0 in both species. As the pH levels decreased from 5.6 to 2.0, the nutrient leaching from leaves was significantly increased in both species. Based on the results, there are a great difference in the responses to SAR between the two species. In general, Tagetes patula L. represented a higher tolerance to SAR than Impatiens balsamina L.. These results suggested that interspecific variation in the acid buffering capacity and nutrient leaching from leaves may be responsible for the interspecific susceptibility to SAR.

  • PDF

The Relations between Growth and Physiological Characteristics of Potted Ginkgo Biloba L. Seedlings Treated with Simulated Acid Rain (人工酸性雨가 處理된 盆植한 은행나무幼苗의 生長과 生理的 特性과의 相關)

  • Kim, Gab-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.13-26
    • /
    • 1987
  • One-year-old seedlings of Ginkgo biloba, potted in three different soils (nursery soil, mixed and sandy soil), were treated with simulated acid rain (pH 2.0, 3.0, 4.0 and 5.0) and tap water (control, pH 6.4) during the growing seasons (1985. 4. 28 - 1985. 10. 19) to examine the effects of acid rain on growth and physiological characteristics, and the relations between seedling growth and physiological characteristics. The results obtained in this study were as follows: 1. The effects of soil types on the total, top and root dry weight per seedling were significant at 5% level, and those of the pH of the rain treated at 1% level. The total dry weight of the pH 3.0 sub-plots was the highest for nursery soil, while for mixed and sandy soils, those of the control and the pH 5.0 sub-plots were the highest, respectively. 2. The leaf surface areas of pH 2.0 sub-plots severely decreased after July, but those of other sub-plots were not affected. The correlations between growth and leaf surface area differed among soil-types, however, the highest positive correlation was found in September. 3. The injured leaf rate increased with decreasing pH levels of acid rain. Highly negative correlations between growth and injured leaf rate were found. 4. The lower the pH level of acid rain treated was, the more the chlorophyll content was measured at the beginning of treatment, and the more severely it decreased at late growing season. A negative correlations were found in August, September and Octobfer. 5. The photosynthetic ability decreased rapidly after July with decreasing pH levels. A highly positive correlation between growth and photosynthetic ability was found in August.

  • PDF

The Effects of Trickle Irrigation Culture and Catch in the Rain on Seed Production of Onion (비가림과 점적 관수재배가 양파의 채종량에 미치는 영향)

  • 권병선
    • Korean Journal of Plant Resources
    • /
    • v.9 no.3
    • /
    • pp.249-253
    • /
    • 1996
  • The study was conducted to investigate the effect of the culture with trickle with trickle irrigation in transparent vinyl house on the seed productivity of onion. Growth, number o tiller and leavers, plant height, leaf sheath length, flowering rate, diameter of flower wheel, number of little flower per flower stalk and fertilization rate are best in the case of the seed production under the culture with trickle irrigation in transparent vinyl mulching house, catch in the rain with vinyl from February to March, so it is found that it is appropriate to plant the onion mother bulb under the culture with trickle irrigation in transparent vinyl mulching house, catch in the rain with vinyl from February to March in the Southern areas of Korea.

  • PDF

Comparative Study of Ni effect on the Corrosion Behavior of Low Alloy Steels in FGD and Acid Rain Environments (산성비 및 배연탈황설비 환경에서 Ni 첨가에 따른 저합금강의 내식성 비교연구)

  • Han, Jun-Hee;Nguyen, Dang-Nam;Jang, Young-Wook;Kim, Jung-Gu
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.558-566
    • /
    • 2009
  • The alloying effect of a small amount of nickel on low alloy steel for application to flue gas desulfurization(FGD) systems was studied. The structural characteristics of the rust layer were investigated by scanning electron microscopy(SEM). The electrochemical properties were examined by means of potentiostatic polarization test, potentiodynamic polarization test, and electrochemical impedance spectroscopy(EIS) in a modified green death solution of 16.9 vol.% $H_2SO_4$+0.35 vol.% HCl at $60^{\circ}C$ and an acid rain solution of $6.25{\times}10^{-5}M\;H_2SO_4+5.5{\times}10^{-3}M\;NaCl$ at room temperature. It was found that as the amount of nickel increased, the corrosion rate increased in the modified green death solution, which seemed to result from micro-galvanic corrosion between NiS and alloy matrix. In acid rain solution, the corrosion rate decreased as the amount of nickel increased due to the repulsive force of $NiFe_2O_4$ rust against $Cl^-$ ions by electronegativity.

Estimation of the Z-R Relation through the Disdrometer for the Coastal Region in the Northeast of Brazil

  • Tenorio, Ricardo Sarmento;Moraes, Marcia Cristina da Silva;Quintao, Demilson de Assis;Kwon, Byung-Hyuk;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.24 no.1
    • /
    • pp.30-35
    • /
    • 2003
  • The preliminary results of the study on the physics of rain using disdrometer data are shown for an area located on the northern coastal board of Macei${\acute{o}}$, Alagoas (9$^{\circ}$33'17.24' and 35$^{\circ}$46'54.84' W), at approximately 80 meters above the sea level. The data were obtained during January 2002 using a disdrometer RD-69 (Joss-Waldvogel). After definining the criteria for determining rain type (convective and stratiform), a set of Z-R pairs was analyzed for estimating the Z-R relation for each rain type. The results were quite similar to those for other regions of the globe. This preliminary analysis will be used to study the structure of rain with the meteorological radar as well as to permit a better understanding of the physics of tropical rain.

Mechanism of strength damage of red clay roadbed by acid rain

  • Guiyuan Xiao;Jian Wang;Le Yin;Guangli Xu;Wei Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.473-480
    • /
    • 2023
  • Acid rain of soils has a significant impact on mechanical properties. An X-ray diffraction test, scanning electron microscope (SEM) test, laser particle size analysis test, and triaxial unconsolidated undrained (UU) test were carried out in red clay soils with different compaction degrees under the effect of different concentrations of acid. The experiments demonstrated that: the dissolution effect of acid rain on colluvium weakened with the increase in the compacting degree under the condition of certain pH values, i.e., the damage to the structure of red clay soil was relatively light, where the number of newly increased pores in the soil decreased and the agglomeration of soil particles increased; for the same compacting degree, the structural gap decreased, and the agglomeration increased with the increase in the pH value (acidity decreases) of the acid rain; the dissolution rate of Si, Al, Fe, and other elemental minerals and cement in red clay soil was found to be higher under the effect of acid rain, in turn destroying the original structure of the soil body and producing a large number of pores. This is macroscopically expressed as the decrease of the soil cohesion and internal friction angle, thereby reducing the shear strength of the soil body.