• Title/Summary/Keyword: railway tunnel fire

Search Result 73, Processing Time 0.027 seconds

A Study of Proper Escape way interval by QRA on Single bored double track tunnel (정량적 위험도 분석을 이용한 복선철도터널에서의 적정 대피통로 간격 산정을 위한 연구)

  • Roh, Byoung-Kuk;Lee, Ho-Suk;Song, Myung-Kyu;Choo, Seok-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.371-376
    • /
    • 2007
  • This paper describes a study to determine proper escape way interval for the design phase of single bored double track tunnel. Among many methods which determine escape way interval, we choose a QRA(Quantitative Risk Analysis) method. But a different method must be chosen differ from other country because of special design situation of Korea. So, it is necessary to develop a method which considers a special design condition of Korea. Because fire accidents of railway tunnel are a rare event, simulated situation can be produced by CFD simulation and evacuation analysis simulation. However, it is generally difficult to estimate of fatalities from these methods, so a concept of FED is introduced to estimate of fatalities. Quantification process provides effective results for practical design stage and the result were employed in design.

  • PDF

Study on the prediction of the stopping probabilities in case of train fire in tunnel by Monte Carlo simulation method (몬테카를로 시뮬레이션에 의한 화재열차의 터널 내 정차확률 예측에 관한 연구)

  • Ryu, Ji-Oh;Kim, Jong-Yoon;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • The safety of tunnels is quantified by quantitative risk assessment when planning the disaster prevention facilities of railway tunnels, and it is decided whether they are appropriate. The purpose of this study is to estimate the probability of the train stopping in the tunnels at train fire, which has a significant effect on the results of quantitative risk assessment for tunnel fires. For this purpose, a model was developed to calculate the coasting distance of the train considering the coefficient of train running resistance. The probability of stopping in case of train fire in the tunnel is predicted by the Monte Carlo simulation method with the coasting distance and the emergency braking distance as parameters of the tunnel lengths and slopes, train initial driving speeds. The kinetic equations for predicting the coasting distance were analyzed by reflecting the coefficient train running resistance of KTX II. In the case of KTX II trains, the coasting distance is reduced as the slope increases in a tunnel with an upward slope, but it is possible to continue driving without stopping in a slope downward. The probability of the train stopping in the case of train fire in tunnel decreases as the train speed increases and the slope of the tunnel decreases. If human error is not taken into account, the probability that a high-speed train traveling at a speed of 250 km/h or above will stop in a tunnel due to a fire is 0% when the slope of the tunnel is 0.5% or less, and the probability of stopping increases rapidly as the tunnel slope increases and the tunnel length increases.

Derivations of Positive Pressure Condition for Development of Foldable Safe Pathway in Railway Tunnel Fires (철도터널화재용 접이식 대피통로 개발을 위한 양압 조건 도출)

  • Kim, JiTae;Ro, Kyoungchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.284-289
    • /
    • 2019
  • The Korea Foldable safe pathway system is an evacuation support system to get temporary evacuation route in railway tunnel and large space fires. A prevention smoke screen is unfolded in fires and it is needed to prevent heat and smoke from fire source. Therefore, ventilation system for positive pressure condition is equipped with foldable safe pathway system. Numerical analyses of temperature and pressure distribution with distance from fire source were performed considering fire scenario of new train vehicle. The smoke temperatures did not exceed $200^{\circ}C$ that distance from the fire source was more than 20 m and smoke pressure was reduced with distance from fire source. Maximum smoke pressure was 14 Pa and average pressure was 6 Pa in position of prevention smoke screen. As results, to install foldable safe pathway system, ventilation system is need to maintain 6 Pa positive pressure condition.

Effects of evacuation delay time and fire growth curve on quantitative risk for railway tunnel fire (철도터널 화재 시 피난개시시간지연 및 화재성장곡선이 정량적 위험도에 미치는 영향)

  • Ryu, Ji-Oh;Kim, Hyo-Gyu;Lee, Hoo-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.809-822
    • /
    • 2018
  • A quantitative risk assessment has been introduced to quantitatively evaluate fire risk as a means of performance based fire protection design in the design of railway tunnel disaster prevention facilities. However, there are insufficient studies to examine the effect of various risk factors on the risk. Therefore, in this study, the risk assessment was conducted on the model tunnel in order to examine the effects of the evacuation start time delay and the fire growth curve on the quantitative risk assessment. As a result of the analysis of the scenario, the fatalities occurred mainly when escapes in the same direction as the direction of the fire smoke movement. In addition, after the FED exceeded 0.3, the maximum fatalities occurred within 10 minutes. In the range of relatively low risk, distance between cross passages, evacuation delay time and fire growth curve were found to affect the risk, but they were found to have little effect on the condition that the risk reached the limit. Especially, in this study, it was evaluated that the evacuation delay time reduction, fire intensity and duration reduction effect were not observed when the distance between cross passages was more than 1500 m.

A case study of fire risk analysis for train coach without gangway doors (철도차량 화재위험도 평가 사례 분석)

  • Lee, Duck-Hee;Kim, Chi-Hun;Kim, Jeong-Hun;Park, Won-Hee;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2232-2241
    • /
    • 2010
  • A case study of fire risk analysis was conducted for train coach which has no gangway doors between coaches. The analysis boundary was limited to the time of outgoing from the coaches for it was train fire risk analysis. ASET(available safe egress time) and RSET(required safe egress time) methodology was used for calculating the dead. 4 liters of gasoline and cable fire at the electric cabinet and the standard fire of EN 45545 were selected for the fire sources. The fire were considered to be occurred at 3 different locations in the car. The train had 3 cases of driving scenarios. The result of all event was summarized for remained tunnel and station egress step.

  • PDF

Numerical Investigation of Smoke Behavior in Rescue Station for Tunnel Fire (철도터널 화재 시 구난역 내의 연기거동에 대한 수치해석 연구)

  • Hong, Sa-Hoon;Ro, Kyung-Chul;Ryou, Hong-Sun;Lee, Seong-Hyuk
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2009
  • The present study deals with numerical investigation for smoke behavior in rescue station by using the commercial CFD code (FLUENT Ver 6.3). With the use of the MVHS(Modify Volumetric Heat Source) model modified from the original VHS(Volumetric Heat Source) model, a 10 MW mode was adopted for simulation and the MVHS model can describe the generation of product and the oxygen consumption at the stoichiometric state. In addition, the present simulation includes the species conservation equations for the materialization of heat source and the estimation of smoke movement. From the results, the smoke flows are moving along the ceiling because of thermal buoyancy force and as time goes, the smoke gradually moves downward at the vicinity of the entrance. Moreover, without using ventilation, it is found that the smoke flows no longer spread across the cross-passages because the pressure in the non-accident tunnel is higher than that in the accident tunnel.

The Design of Realtime Cognitive System to detect Dangerous Situations in Railway Tunnel Environment (철도터널 환경에서 위험상황 감지를 위한 실시간 인지시스템의 설계)

  • Oh, HyeonJin;You, Song-su;Lee, Seungshin;Oh, Ryumduck
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.293-296
    • /
    • 2022
  • 본 논문에서는 실제 주행하는 철도가 지나가는 터널에서 유발되는 안전사고 및 주변에 거주하는 주민들과, 서식하는 야생동물들에게 피해를 입힐 수 있는 소음과 진동을 감지하고, 철도가 터널을 운행하는 상황을 구현하여, 너털에서의 위험 요소들에 대한 상황 데이이터들을 센서를 통해 데이터 수집을 진행하고 다양한 위험 상황으로부터 실시간 감지를 통해 데이터들을 분석하고 적절한 상황 지원을 위한 실시간 인지시스템 모델을 설계하고 지원한다.

  • PDF

Rolling Stock Fire Engineering aspect of System Engineering (System Engineering 측면에서 전동차 화재기술관리)

  • Chang, Jung-Hoon;Kang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.163-168
    • /
    • 2005
  • In case of rolling stock, SEMS is generally applied in the advanced countries, but is start stage in our country. SEMS is defined the system engineering management system in order to achieve the optimized train performance among the several client requirements aspect of technical engineering management during the design life cycle. And the fire engineering activities in hong kong EMU project are introduced aspect of SEMS in this paper. The fire engineering at rolling stock in view of SEMS controls to apply the satisfied interior material by the fire safety standards (regulation of the commute urban subway safety guideline by the MOCT, BS 6853, NFPA 130, NF F 16-101) and to minimize the fire load in order that passengers egress safe from the fired rolling stock. The rolling stock in the advanced countries is designed to stand for 15-20 minutes in considering the rolling stock to be fired in tunnel. For passenger fire safety, the passenger evacuation provision and progress is set up.

  • PDF

The Study on The Ventilated Flow in The Railway Tunnel Mock-Up for Tunnel Fire-Driven Flow Experiment (철도터널 화재유동 실험을 위한 모형 터널에서의 환기 유동 형태에 관한 연구)

  • Jang, Yong-Jun;Kim, Seung-Tae;Kim, Dong-Hyeon;Park, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1781-1788
    • /
    • 2008
  • This report is the result of a basic experiment done on a mock-up tunnel, of what happens to the ventilated flow and fire driven flow inside a railway tunnel as the current inside the tunnel changes when an anti-smoke or a radio frequency invert control is installed. The duct used in this experiment is 10m in length, 0.5m in height and 0.25m in width and made of acrylic. An anti-smoke system with a motor that can produce current of 10m/sec maximum in order to create ventilated flow, has been installed. A honeycomb has been installed at the entrance of the duct to create a current flow that exists in tunnels. In order to create a ventilated flow, a current of 4m/s, 6m/s and 8m/s were generated using the anti-smoke system, as the study of current developed. A Hot-wire(TSI) and Pressure sensor(ENDEVCO) was installed in the duct, 1m apart, as the measurement of current and pressure went on. The current and pressure were automatically measured through the Lap View program and PC; the current flow in the mock-up tunnel generated by the honeycomb has been analyzed the pressure distribution and pressure drop has been analyzed.

  • PDF