• Title/Summary/Keyword: railway substructure

Search Result 51, Processing Time 0.03 seconds

Study on compaction characteristics of mixed fill materials(rock and soil) in railway roadbed (철도노반 혼합(흙과 암)성토의 다짐특성에 관한 연구)

  • Kim, Dae-Sang;Park, Seong-Yong;Song, Jong-Woo;Kim, Soo-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Concrete track will be constructed in Gyungbu High Speed Railway II(GHSR II) stage construction site from Daegu to Busan. Concrete track is supported by substructure consisting of the original ground and embankment and does not allow the settlement of track because of its structural type. The embankment is composed of rock and soil mixture and settlement is feasible. So management of settlement of embankment is key point in successful construction of the concrete track. Compaction management of mixed fill materials is important in minimizing the settlement of embankment. In this study, in order to assess the compaction characteristics of mixed fill materials, large laboratory compaction tests were conducted. Mixed fill materials were obtained from two construction sites in GHSR II construction site. Modeled mixed fill materials having different rock type, fine content, maximum particle diameter, and moisture contents were prepared. From the test results, compaction characteristics of mixed fill materials were analysed.

  • PDF

Performance Evaluation of Railroad Bridge Foundation under Design Earthquake (철도교량 기초지반의 내진성능평가)

  • 황선근;이진욱;조성호;오상덕
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.165-170
    • /
    • 2002
  • At the present time, civil structure based of aseismatic design in the Korea began about 1997. However, most of the railway bridge constructed with block and block in the past can easily deteriorate with time due to the increase of repeated traffic loading, increase of train speed, etc. In this study, soil properties of the substructure of railway bridge with block and block was investigated through the SASW(spectral Analysis or Surface Waves) and RCTC test in the field and laboratories. Also, stabilization of liquefaction after occurred earthquake was investigated through the Seed & Idress method use of N value and Andrus and Stoke method use of S-Wave velocity.

  • PDF

CWR for Young Jong Great Bridge Sourth Approach Section by ZLR (Zero Longitudinal Restraint) (종방향 활동체결구를 이용한 영종대교 남측 접속교량의 장대레일화 사례)

  • Lee Duck Young;Yang Sin Chu;Kwon Soon Sub;Kim Yong Man
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1057-1064
    • /
    • 2004
  • For New In-Cheon Airport. South Approach Section of Young long Great Bridge is to be special concerned to CWR due to substructure was already constructed former railroad bridge design specification. So we applied maintenance free system and CWR (Continuous Welded Rail) by ZLR(Zero Longitudinal Restraint) at bridge expansion joint part. This thesis generally introduce for CWR by ZLR at South Approach Section of Young long Great Bridge.

  • PDF

A study on Grid deck for LRT (경량전철용 I형강 격자바닥판에 관한 연구)

  • 이기승;백진기;구자성;이안호;성택룡
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.328-335
    • /
    • 2000
  • The substructure of Light Rail Transit is mainly built on elevated structure that is composed of pier, girder and bridge deck. The bridge deck mostly has been made by field formed reinforced concrete so far. The objectives of the study are to find a method for design and construction of the new bridge deck. I-beam is fabricated to make grid and concrete is poured on it at factory. This type can be used for maintenance of duty line by advantages such as good quality control and short construction time.

  • PDF

Field Test on Rigidities of Piers in High-speed Railway (고속전철 교각의 강성도 산정을 위한 현장실험)

  • 진원종;곽종원;김병석;박성용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.745-750
    • /
    • 2000
  • The rigidity of pier is important in the analysis of rail on high speed railway bridges. This study is being performed because of followings. 1) Actual longitudinal stiffness of the structure including substructure should be considered in the calculation of longitudinal stresses in rails. 2) There are many uncertainties in piers and foundations for design. 3) Actual guideline for the design of piers is necessary. 4) Measurement on the rigidity of pier according to the types of pier, foundation and soil-condition is needed. Curve for rigidity will be obtained through this study and applied for actual design as the guideline. Stresses in rails can be estimates accurately. A pair of piers, which consists of pot-bearing for fixed support and pad-bearing for movable support, is loaded by steel frame through steel wire ropes. The responses which are intended to measure in the field test are displacements, forces and tilts on the top of piers.

  • PDF

A Study on Optimal Handoff of Wireless Network for Communication Based Train Control(CBTC) (무선통신기반열차제어시스템의 핸드오프 최적화 연구)

  • Lee, Hwa-Yun;Choe, Gyu-Hyeong
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1321-1326
    • /
    • 2008
  • According to the conventional train control system, the area of each train is detected by plural track circuits located in a constant distance on railway lines in order to control a distance between trains. The conventional train control system has the difficulty in making use of the substructure thoroughly and transmitting enormous amount of information. To solve those problems, the wireless CBTC system has been a global issue. To apply wireless CBTC system to train system, the following two requirements are preferentially necessary: (1) Dualizing wireless CBTC system to control trains ceaselessly in a system accident, (2) Improving dependency of transmitted information for location and velocity to protect collision and derailment of lightweight trains in advance.

  • PDF

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

Proposal of Measuring Method and Design for the Testing Curved Railway of the Tilting Train (틸팅열차 기존선 시험운행 곡선구간 설계 및 계측방안 제시)

  • Yoo, Keun-Su;An, Gang-Yell;Lee, Chang-Hun;Han, Ju-Seop;Park, Min-Kwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.173-180
    • /
    • 2008
  • The major objective of this study is to proposal of measuring method and design for the testing curved railway in which the tilting train runs. In order to the speed-up of conventional lines that have many curve lines, there needs a improvement construction of substructure such as the straight or double track work and so on. But in this case, it needs to have a plenty of the cost and the period. Therefore, the tilting train which provides the high-speed service effectively in curve tracks was developed. Besides, the efficiency prediction and the linear synthesis of the existing conventional line for a tiling train service were examined on the preceding studies. So, in this paper we propose the measuring plan and the design of the improvement sections in the testing curved track which was decided as a results of material analysis and field research concerning the extension possibility of transition curves and the bearing of track due to the new developed train traveling. And we look forward to playing a decisive role as reference data on the improvement construction project for the commercial service of the tilting train.

  • PDF

Evaluation on the Applicability of the Conventional Roadbed Stiffness for High Speed Concrete Track (일반철도 노반 강성조건에서의 고속철도용 콘크리트 궤도의 적용성 검토)

  • Lee, Jin Wook;Lee, Seong Hyeok;SaGong, Myung;Lyu, Tae Jin
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Based on Korean railway design standards, the thicknesses of the reinforced roadbeds of conventional and high speed railways are different, and so too, for the size distribution of the ballast particles. Accordingly, considerable cost would be required to increase operating speeds of conventional lines, in particular related to changing from a ballasted track system to a ballastless one. In this study, applicability of a roadbed which supports conventional ballasted track, for use as a ballastless track for a high speed rail line was examined. A reinforced roadbed for a conventional railway is 20cm thick, and the type of material used for a conventional reinforced roadbed is M-40 (crushed gravel for road embankments). A dynamics test was conducted to evaluate the occurrence of the permanent settlement of the track substructure. These results suggest that, without changes to the track substructure, an operational speed of 400km/h is feasible with a ballastless track. This result; however, is from laboratory experiments. Further studies, such as numerical analyses or field validation, are required.

Numerical study of anomaly detection under rail track using a time-variant moving train load

  • Chong, Song-Hun;Cho, Gye-Chun;Hong, Eun-Soo;Lee, Seong-Won
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.161-171
    • /
    • 2017
  • The underlying ground state of a railway plays a significant role in maintaining the integrity of the overlying concrete slab and ultimately supporting the train load. While effective nondestructive tests have been used to evaluate the rail track system, they can only be performed during non-operating time due to the stress wave generated by active sources. In this study, finite element numerical simulations are conducted to investigate the feasibility of detecting unfavorable substructure conditions by using a moving train load. First, a train load module is developed by converting the train load into time-variant equivalent forces. The moving forces based on the shape functions are applied at the nodes. A parametric study that takes into account the bonding state and the train class is then performed. All the synthetic signals obtained from numerical simulations are analyzed at the frequency domain using a Fast Fourier transform (FFT) and at the time-frequency domain using a Short-Time Fourier transform (STFT). The presence of a void condition amplifies the acceleration amplitude and the vibration response. This study confirms the feasibility of using a moving train load to systematically evaluate a rail track system.