• Title/Summary/Keyword: railway site

Search Result 311, Processing Time 0.023 seconds

Seismic Response of CWR on HSR Bridge Considering Derailment Inducing Factors (탈선취약요소를 고려한 고속철도교량 장대레일 지진응답 평가)

  • Yi, Jang-Seok;Kim, Dae-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.29-38
    • /
    • 2009
  • n the event of an earthquake, additional stresses can occur in the continuous welded rails (CWR) of High-speed railway (HSR) bridges due to relative displacements at expansion joints, and this stress can cause derailment. The amplification of ground motion occurs as a result of site effects, and this is pronounced at the site of a soft surface soil layer and of a rigid surface soil layer over a soft one. As a result, the amplified ground motion leads to an amplified seismic response in HSR bridges. A change in bridge pier height affects the seismic behavior of the bridge. A HSR bridge with gravel ballast tracks will show different dynamic behavior during an earthquake than one with concrete ballast tracks. The seismic responses of HSR bridges and their CWR are analyzed considering the derailment-inducing factors.

The Effect of Fretting Wear on Fatigue Crack Initiation Site of Press-fitted Shaft (압입축에 발생하는 프레팅 마모가 피로균열 발생 위치에 미치는 영향)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.546-553
    • /
    • 2007
  • The objective of the present paper is to evaluate the effect of the evolution of contact surface profile by fretting wear on the contact stress distribution and fatigue crack initiation site of press-fitted shaft by means of an analytical method based on experimental data. A finite element analysis was performed to analyze the stress states of press-fitted shaft, considering the worn contact surface profiles of shaft. The evolutions of contact stress as wearing of contact surface were analyzed by finite element analysis and fatigue crack nucleation sites were evaluated by fretting fatigue damage parameter (FFDP) md multiaxial fatigue criteria. It is found that the stress concentration of a contact edge in press-fitted sha손 decreases rapidly at the initial stage of total fatigue life, and its location shifts from the contact edge to the inside due to fretting wear as increasing of fatigue cycles. Thus the transition of crack nucleation position in press-fitted shaft is mainly caused by stress change of a contact edge due to the evolution of contact surface profile by fretting wear. Therefore, it is suggested that the nucleation of multiple cracks on fretted surface of press fits is strongly related to the evolution of surface profile at the initial stage of total fatigue life.

Rationalization of Gripper TBM Supporting System Pass through Serviced Subway Line (기존 운행선 직하부 통과 굴착에 따른 Gripper TBM 지보패턴 합리화 방안)

  • Hak-Young So;Kook Hwan Cho
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.413-420
    • /
    • 2024
  • When planning gripper TBM, which is highly applicable to urban areas, the excavation characteristics are not considered. In addition the excavation stability and constructability are degraded by installing reinforcements in the adjacent construction site considering the relaxation load theory of the pre-existing NATM. In this study, a rationalization plan for the support was proposed considering the excavation characteristics of gripper TBM when planning reinforcements for adjacent pre-existing construction. The effect of excavation on the surrounding ground was analyzed by conducting three-dimensional stability analyses considering the construction stage for each excavation phase. In NATM, relaxation phenomenon is concentrated in tunnel face due to non-supporting time occurring simultaneously with excavation, but gripper TBM supports the ground around the tunnel face through the cutter head and skin plate, simultaneously causing ground relaxation behind the skin plate. Considering these excavation characteristics, problems in reinforcement planning for adjacent construction at the study site were pointed out. A performance improvement plan for a reasonable supporting system was proposed.

Rail-Stress of High-Speed Railway Bridges using tong Rails and subjected to Spatial Variation of Ground Motion Excitations (지반운동을 공간변화를 고려한 고속철도 장대레일의 응력해석)

  • Ki-Jun Kwon;Yong-Gil Kim
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.132-138
    • /
    • 2003
  • The use of long rails in high-speed railway bridges causes additional stresses due to nonlinear behaviours between the rail and bridge decks in the neighbourhood of the deck joints. In the seismic response analysis of high-speed railway bridges, since structural response is highly sensitive to properties of the ground motion, spatial variation of the ground excitation affects responses of the bridges, which in turn affect stresses in the rails. In addition, it is shown that high-speed trains need very long distances to stop when braking under seismic occurrence corresponding to operational earthquake performance level so that verification of the safe stoppage of the train is also required. In view of such additional stresses due to long rails, sensibility of structural response to the properties of the ground motion and braking distance needed by the train to stop safely, this paper proposes and establishes a time domain nonlinear dynamic analysis method that accounts for braking loads, spatial variation of the ground motion and material nonlinearities of rails to analyze long rail stresses in high-speed railway bridges subjected to seismic event. The accuracy of the proposed method is demonstrated through an application on a typical site of the Korean high-speed railway.

Deriving AR Technologies and Contents to Establish a Safety Management System in Railway Infrastructure (철도 인프라 안전 관리 시스템 구축을 위한 AR 기술 및 콘텐츠 도출)

  • Jeon, Hae-In;Yu, Young-Su;Koo, Bon-Sang;Seo, Hyeong-Lyel;Kim, Ji-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.427-438
    • /
    • 2022
  • With the recent growing importance over safety management the need for advanced and technical approaches for on-site safety inspection methods has increased. Railway construction is subject to its own particular set of temporal and spatial challenges due to its unique facilities and equipment. This study aimed to investigate the field characteristics of railway infrastructure and improve the conventional field safety management methods by identifying the most appropriate features of AR technology. Group interviews and surveys were conducted with field safety experts to derive the major problems and inspection needs. Subsequently, various features of AR, such as BIM model projection, and remote conferencing, were investigated to determine their applicability to address safety issues. As a result, four problems in the current safety management process, such as 'lack of time due to the conventional inspection method and inspection of areas that are difficult to access', and three major inspection types, such as 'observance of work procedures, status of installation, adequate dimensional spacing', were identified to be improved when adopting AR based techniques. Furthermore, AR technology utilizing plans to solve safety inspection problems and effectively manage major inspection types were proposed, and a follow up survey was conducted with the same field safety experts to derive the priority of technology development.

A Study to select the optimum size for the panel of the precast slab track system (프리캐스트 슬래브궤도 패널의 최적규격 선정을 위한 연구)

  • Kim, Yoo-Bong;Moon, Do-Young;Beak, In-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.740-744
    • /
    • 2011
  • Precast slab track system(PSTS) is a concrete track laying system where the slab panels are pre-manufactured in factories and assembled and installed on-site. PSTS has been developed for the past 30 years in countries where railway technologies are advanced such as Japan and Germany to improve the various drawbacks of the in-situ concrete slab track. However, the usefulness of PSTS is being continuously approved by many other countries such as China, Taiwan, Austria, Italy, Spain, etc,. Lately, not only Japan and Germany, but also Austria, Italy and China have developed their own PSTS by collaboration between their Governments and private enterprises and are now attempting to expand their businesse soverseas. In accordance to such movement, in 2006, the Korean Railroad Research Institution and Sampyo E&C have developed a Korean PSTS by joint research. PSTS consists of concrete panel, under pouring layer and concrete base layer. Amongst these components, the panel is the main component of PSTS which supports the train load and has a great effect on the track quality, workability and economics. Therefore, a study is to be conducted to select the optimum size for the Panel of the precast slab track system panel by analyzing the various standards & forms, interpretation of finite elements of the selected model and economical analysis.

  • PDF

A Study on the Vibration Characteristics due to the Running Conditions for Korean High Speed Train (한국형 고속전철의 주행조건에 따른 진동특성 분석에 관한 연구)

  • 박찬경;한영재;김영국;김석원;최강윤
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.125-130
    • /
    • 2003
  • Korean High Speed Train (KHST) designed to operate at 350km/h has been tested on high speed line in JungBu site since it was developed in 2002. The dynamic performances of railway vehicle are generally stability, safety and ride comfort. The stability performance of KHST was proved that it is stable at 400Km/h through Roller Rig test. The safety and ride comfort need to be predicted the capability of it at 350km/h by the on-line test because KHST is testing at 300km/h up to now. Therefor, in this paper, the safety and ride comfort at 350km/h are predicted the performance using the acceleration results at 300kw/h and these results show that the KHST's dynamic performances are very good. Also, it illustrate the two cases occurred the abnormal vibration of KHST during some on-line tests. The first case is that the variation of vertical acceleration of wheel is analyzed when an abrasion occur on wheel. The second case is that the lateral acceleration of wheel, bogie and body are analyzed when the KHST is unstable at high speed. The occurrences of these special phenomena were due to the some faults of the suspension and braking systems and the faults were improved. In present, it is testing with safety.

  • PDF

Analysis of the Acceleration Characteristics on the Conventional line for Korean High Speed Train- in il point of passing speed on the curve (한국형 고속전철의 기존선 주행 진동가속도 특성 분석 - 곡선 통과속도 중심으로)

  • 김영국;김석원;목진용;박찬경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.222-227
    • /
    • 2004
  • Korean High Speed Train(KHST) has been tested on the high speed test line in Osung site, since it was developed through the G7 Project Plan in 2002. It was also tested on the conventional line such as KyongBu and Honan Line to know the possibility of increasing the limited speed for the high speed trains. This paper introduces the method to improve the speed on the conventional line with body lateral acceleration among the several considered issues and explains the parameters related to those analysis, such as the cant deficiency, the radius of curve, speed and etc. When a train pass on the curved track, the lateral accelerations of body are divided into the quasi-static and the maximum accelerations according to the UIC 518 which is the international specification for testing and approval of railway vehicles from the point of view of their dynamic behaviour, especially for safety and ride comfort. This paper shows that it is safe and comfort from the results of test when KHST runs on the conventional line with the curves and proposes that the limited speed of conventional curved line could be changed to a little higher speed if the analysises of other fields are completed.

  • PDF

The Architectural Characteristics of Housing through the Rail and Property Model of MTRC in Hong Kong

  • Baek, Seung-Kwan;Kim, Young-Hoon;Kim, Doo-Sik
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.21-33
    • /
    • 2015
  • Purpose: Domestically, a recent controversial part on Mixed-Use Development is its case that utilizes railroad sites among urban infrastructure. but most of all, a concern is being concentrated on the Mixed-Use Development that uses railroad depot. It has the advantage, which can give diversity and publicness to urban environment by using and planing the upper and bottom of railroad depot, a proximity site as Development Available Land. However, there are few cases except for only Yang-cheon APT in SinJeong railway depot as a domestic case even though a domestic concern about Mixed-Use Development is rising more than ever. Method: Accordingly, this study has something in common with a domestic case, dealing with a case of development in Hongkong that enhances efficiency for city space through Mixed-Use Development and solves various urban problems. Result: A purpose of this study, based on overall comprehension about Rail and Property Model of MTRC in Hongkong, is to figure out how it solve various problems in Mixed-Use Development using Railway Depot or stations in the base of Rail and Property Model of MTRC.

Analysis of Reinforcement Effect with Geotextile types on Soft Ground (연약노반상에서의 토목섬유 적용에 따른 보강효과 분석)

  • Lee Jin-Wook;Choi Chan-Yong;Lee Seong-Hyeok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.69-75
    • /
    • 2006
  • In this study, Several types of geotextile was used on the selected track-bed. The use of geotextile prove a economical and efficientmean to prevent the problem of mud-pumping and settlement. Field testing sections from Mock-haeng to Dong-ryang in the Chungbuk lines in Korea were selected to investigate in current condition the of track and roadbed. This testing site was divided into 5 sections. In the four sections, different types of geotextiles were installed. In order to estimate for performance of the reinforced section with geotextiles on the soft ground, four different geotextiles were installed and compared with no reinforced section. Also, after the installation, mud-pumping, settlement of elastic or plastic sleeper, failure of track, wheel-loads, and earth pressures were investigated. The following is the summaries from the field tests. As a conclusion, According to naked eyes investigation, mud pumping didn't happen at reinforced sections, but no reinforced section was happen to a top of track for 6 months. And Elastic displacements at the reinforced and no reinforced section were about $30.7\%\;and\;73.8\%,$ respectively. Also, It was found that plastic displacement in reinforced section was retrained about $50\%$ more than that in no reinforced section.