The Effect of Fretting Wear on Fatigue Crack Initiation Site of Press-fitted Shaft

압입축에 발생하는 프레팅 마모가 피로균열 발생 위치에 미치는 영향

  • 이동형 (한국철도기술연구원, 철도시스템연구본부) ;
  • 권석진 (한국철도기술연구원, 철도시스템연구본부) ;
  • 최재붕 (성균관대학교, 기계공학부) ;
  • 김영진 (성균관대학교, 기계공학부)
  • Published : 2007.10.31

Abstract

The objective of the present paper is to evaluate the effect of the evolution of contact surface profile by fretting wear on the contact stress distribution and fatigue crack initiation site of press-fitted shaft by means of an analytical method based on experimental data. A finite element analysis was performed to analyze the stress states of press-fitted shaft, considering the worn contact surface profiles of shaft. The evolutions of contact stress as wearing of contact surface were analyzed by finite element analysis and fatigue crack nucleation sites were evaluated by fretting fatigue damage parameter (FFDP) md multiaxial fatigue criteria. It is found that the stress concentration of a contact edge in press-fitted sha손 decreases rapidly at the initial stage of total fatigue life, and its location shifts from the contact edge to the inside due to fretting wear as increasing of fatigue cycles. Thus the transition of crack nucleation position in press-fitted shaft is mainly caused by stress change of a contact edge due to the evolution of contact surface profile by fretting wear. Therefore, it is suggested that the nucleation of multiple cracks on fretted surface of press fits is strongly related to the evolution of surface profile at the initial stage of total fatigue life.

본 연구는 압입축에 프레팅이 발생할 경우 프레팅 마모에 의한 접촉형상의 변화가 접촉응력의 분포, 균열발생 위치에 미치는 영향을 분석하고자 하였다. 압입축의 프레팅 피로실험시 측정한 접촉면의 프로파일을 이용하여 유한요소 해석을 수행하고 피로 사이클별 마모형상 변화에 따른 접촉면의 응력 변화를 분석하였다. 접촉면의 응력 해석결과를 이용하여 프레팅 피로손상 파라미터와 다축 피로이론를 적용하여 마모에 따른 균열발생위치의 변화를 해석하고 실험과 비교, 분석하였다. 프레팅 마모에 의해 접촉 끝단의 응력집중은 초기에 급격하게 감소하며, 마모가 진행될수록 응력집중의 위치는 접촉끝단에서 안쪽으로 이동한다. 따라서 프레팅 마모에 의한 접촉응력의 변화가 균열발생 위치의 변차와 다중균열발생의 주요원인임을 명확히 하였다.

Keywords

References

  1. R. B. Waterhouse (1992), 'Fretting fatigue,' International materials reviews, Vol.37, No.2, pp.77-97 https://doi.org/10.1179/imr.1992.37.1.77
  2. 機械.構造物の破損事例と解析技術'(1984), 日本機械學會
  3. R. Kühnel (1932), 'Achsbrüche von Eisenbahnfahrzeugen und ihre Ursachen,' Glasers Annln, Gewerbe Bauw., Vol.110, p.39
  4. O. J. Horger (1956), 'Fatigue of Large Shafts by Fretting Corrosion,' Proc. Int. Conf. Fatigue Metals, pp.352-360
  5. W. W. Maxwell, B. R. Dudley, A. B. Cleary, J. Richards, and J. Shaw (1967-68), 'Measures to Counter Fatigue Failure in Railway Axles,' Proc. Inst. Mech. Engrs., Vol.182, Pt.1, No.4, pp.89-99
  6. K. Nishioka and K. Komatshu (1967), 'Study on the means for Improvement in Fatigue Strength of press-fitted axles,' Trans. Jpn. Soc. Mech. Eng., Vol.33, No.248, pp.503-511 https://doi.org/10.1299/kikai1938.33.503
  7. S. Tanaka, K. Hatsuno, B. Mori, and S. Yaguchi (1975), 'Fretting Corrosion and Fatigue Strength for Wheel-seat of Car-Axle - Test Results of Full Size Wheel Axle Testing Machine - (Report 1),' Railway Technical Research Report, No.955
  8. R. A. Smith and S. Hillmansen (2004), 'A brief historical overview of the fatigue of railway axles,' Proc. Instn Mech. Engrs. Part F: J. Rail and Rapid Transit, Vol.218 No.4 pp.267-278 https://doi.org/10.1243/0954409043125932
  9. K. Hirakawa, K. Toyama and M. Kubota (1998), 'The analysis and prevention of failure in railway axles,' Int. J. Fatigue, Vol.20, No.2, p.135 https://doi.org/10.1016/S0142-1123(97)00096-0
  10. T. Makino and M. Yamamoto and K. Hirakawa (1997), 'Effect of Contact Edge Profile on Fretting Fatigue Crack Initiation Site in Press-Fitted Axle,' Trans. Jpn. Soc. Mech. Eng. (A), Vol.63, No.615, pp.2312-2317 https://doi.org/10.1299/kikaia.63.2312
  11. 이동형, 권석진, 최재붕, 김영진 (2007), '압입축에 발생하는 프레팅 피로균열 발생 및 진전특성 실험', 대한기계학회논문집 A권, Vol.31, No.6, pp.701-709 https://doi.org/10.3795/KSME-A.2007.31.6.701
  12. ABAQUS (2003), 'ABAQUS user's and theory manual', Version 6.4, Hibbit, Karlson & Sorensen, Inc
  13. D. H. Lee, S. J. Kwon, J. B. Choi, and Y. J. Kim (2006), 'Fatigue Life Evaluation of Press-fitted Shaft considering the Evolution of Contact Stress and Surface profile under Bending Load,' 9th International Fatigue Congress, CD-rom ver
  14. A. C. Ugural and S. K. Fenster (1995), Advanced strength and applied elasticity: Prentice-Hall, Inc
  15. C. Ruiz and P. H. B. B. a. K.C.Chen (1984), 'An investigation of fatigue and fretting in a dovetail joint,' Experimental Mechanics, Vol.24, No.3, pp.208-217 https://doi.org/10.1007/BF02323167
  16. C. D. Lykins, S. Mall, and V. Jain (2000), 'An evaluation of parameters for predicting fretting fatigue crack initiation,' Int. J. Fatigue, Vol.22, pp.703-716 https://doi.org/10.1016/S0142-1123(00)00036-0
  17. R. I. Stephens, A. Fatemi, R.R. Stephens and H.O. Fuchs, Metal Fatigue in Engineering-2nd ed.: John Wiley & Sons, 2001
  18. C. D. Lykins, S. Mall, and V. K. Jain (2001), 'Combined experimental-numerical investigation of fretting fatigue crack initiation,' Int. J. Fatigue, Vol.23, pp.703-711 https://doi.org/10.1016/S0142-1123(01)00029-9
  19. R. B. Waterhouse and D. E. Taylor (1971), 'The initiation of fatigue cracks in a 0:7% carbon steel by fretting,' Wear 17, pp.139-147 https://doi.org/10.1016/0043-1648(71)90024-X