• Title/Summary/Keyword: railway bridge piers

Search Result 34, Processing Time 0.017 seconds

The Effects of Elastomer-Bearing on the Dynamic Behaviors of Bridge for KHSR (고속철도 교량의 동적거동에 미치는 탄성받침의 영향)

  • 곽종원;김병석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 1999
  • The bridges for Korea High-Speed Railway(KHSR) under construction are supported with pot bearings on the middle pier and with pad bearings on the side piers, respectively. The dynamic analysis on these bridges due to trains with high speed, however, has been performed neglecting the effects of bearings. The objective of this study is investigation on the dynamic behavior of bridge supported by pad bearings. The effects of pad bearings with various flexibilities on the dynamic responses of bridges are studied. From the results of this study, the effects of elastomeric bearing on the dynamic responses of bridge(especially vertical accelerations) may cause undesirable behaviors.

  • PDF

Stability evaluation of CWR on the bridge with lead Rubber Bearing(LRB) (LRB 교좌장치를 사용한 교량의 장대레일 축력안정성 평가)

  • Yang Sin-Chu;Yun Cheol-Kyun;Lee Jin-Woo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.787-792
    • /
    • 2004
  • LRB(Lead rubber bearing) has small resistance force against slowly acting loadings such as temporal and creep loadings vice versa large resistance force against rapid loadings such as earthquake and braking loadings. By those mechanical characteristics, it has the advantage to reduce longitudinal load acting on abutments and piers, and moreover to in1prove the running stability of train by restricting the behavior of bridge under the required level. In this study, a stability evaluation method of CWR on the bridge with LRB is presented. Several parametric studies are carried to investigate how LRB contributes to the improvement of CWR stability.

  • PDF

Safety Assessment of RC Pier Coping According to Modification of Rebar Arrangement (RC교각 코핑부 배근방법에 따른 안전성 평가)

  • Park, Bong-Sik;Park, Sung-Hyun;Shin, Wang-Su;Cho, Jae-Yeol
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1519-1525
    • /
    • 2011
  • Construction of the coping of reinforced concrete piers is very complicated due to heavy density of rebars and usually exposed to negligent accident. To correct these problems, coping is pre-assembled at the ground in pier coping pre-assembly method and recently a new method of rebar assembling has proposed in this study. For safety assessment of proposed method, small scale model test of railway bridge(PSC U-GIRDER T-shaped pier) was carried out and it was verified that crack pattern, failure mechanism and load resistance capacity are similar between existing method and proposed method. And using analytical approach, linear and non-linear finite element analysis was performed. As a result, it was checked that proposed method has an acceptable structural safety.

  • PDF

Experimental study on ductile crack initiation in compact section steel columns

  • Luo, Xiaoqun;Ge, Hanbin;Ohashi, Masatoshi
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.383-396
    • /
    • 2012
  • In order to develop a verification method for extremely low cycle fatigue (ELCF) of steel structures, the initiation mechanism of ductile cracks is investigated in the present study, which is the first step of brittle fracture, occurred in steel bridge piers with thick-walled sections. For this purpose, a total of six steel columns with small width-thickness ratios were tested under cyclic loading. It is found that ductile cracks occurred at the column base in all the specimens regardless of cyclic loading histories subjected. Moreover, strain history near the crack initiation location is illustrated and an index of energy dissipation amount is proposed to evaluate deformation capacity of structures.