• Title/Summary/Keyword: radon reduction

Search Result 55, Processing Time 0.024 seconds

The Study on Reduction of Hazardous Materials using Eco-friendly Charcoal Composite Sheet (친환경 활성탄 복합시트의 유해물질 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Lee, Su-Min;Yang, Seung-Woo;Kim, Kyo-Tae;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.615-621
    • /
    • 2018
  • Recently, various environmentally friendly products have been developed for improving the indoor air quality while pursuing a well-being nature-friendly healthy life as a core value. In this research, we not only solve the problems of existing environmentally friendly paints, but also developed a charcoal composite seats that can reduce radon, which is a natural radioactive substance, and evaluated the reduction effect of radon, formaldehyde and volatile organic compounds. In the charcoal composite seats, a sodium silicate emulsion and charcoal were mixed to prepare an charcoal liquid coating material, and the composite seats was fabricated by air-spray coating method. In order to analyze the hazardous substance reduction performance of the fabricated charcoal composite seats, radon was designed to comply with the Ministry of the Environment standard, formaldehyde and volatile organic compounds were designed to comply with KCL-FIR-1085 standard. As a result of the experiment, the fabricated charcoal composite seats was evaluated as having a radon reduction capability of about 90.8% from 20 hours, formaldehyde and volatile organic compounds were 3 hours, and the reduction capability of 96.7% and 96.6% was found respectively. It is considered that these results can be utilized as basic data at the time of product development for improvement of indoor air quality.

Numerical Study on Indoor Dispersion of Radon Emitted from Building Materials (건축자재로부터 방출되는 라돈의 실내 확산에 대한 수치해석적 연구)

  • Park, Hoon Chae;Choi, Hang Seok;Cho, Seung Yeon;Kim, Seon Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.325-332
    • /
    • 2014
  • Growing concerns about harmful influence of radon on human body, many efforts are being made to decrease indoor radon concentration in advanced countries. To develop an indoor radon reduction technology, it is necessary to develop a technology to predict and evaluate indoor inflow and emission of radon. In line with that, the present study performed computational modelling of indoor dispersion of radon emitted from building materials. The computational model was validated by comparing computational results with analytical results. This study employed CFD (Computational Fluid Dynamics) analysis to evaluate the radon concentration and the airflow characteristics. Air change rate and ventilation condition were changed and several building materials having different radon emission characteristics were considered. From the results, the indoor radon concentration was high at flow recirculation zones and inversely proportional to the air change rate. For the different building materials, the indoor radon concentration was found to be highest in cement bricks, followed by eco-carats and plaster boards in the order. The findings from this study will be used as a method for selecting building materials and predicting and evaluating the amount of indoor radon in order to reduce indoor radon.

A Study of Radon Reduction using Panel-type Activated Carbon (판재형 활성탄을 이용한 라돈 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Jun, Jae-Hoon;Yang, Seung-Woo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • Recently, building materials and air purification filters with eco-friendly charcoal are actively studying to reduce the concentration of radon gas in indoor air. In this study, radon reduction performance was assessed by designing and producing new panel-type activated carbon filter that can be handled more efficiently than conventional charcoal filters, which can reduce radon gas. For the fabrication of our panel-type activated carbon filter, first the pressed molding product after mixing activated carbon powder and polyurethane. Then, through diamond cutting, the activated carbon filter of 2 mm, 4 mm and 6 mm thickness were fabricated. To investigate the physical characteristics of the fabricated activated carbon filter, a surface area and flexural strength measurement was performed. In addition, to evaluate the reduction performance of radon gas in indoor, the radon concentration of before and after the filter passes from a constant amount of air flow using three acrylic chambers was measured, respectively. As a result, the surface area of the fabricated activated carbon was approximately $1,008m^2/g$ showing similar value to conventional products. Also, the flexural load was found to have three times higher value than the gypsum board with 435 N. Finally, the radon reduction efficiency from indoor gas improved as the thickness of the activated carbon increases, resulting in an excellent radon removal rate of more than 90 % in the 6 mm thick filter. From the experimental results, the panel-type activated carbon is considered to be available as an eco-friendly building material to reduce radon gas in an enclosed indoor environment.

Efficient Correction of a Rotated Object Using Radon Transform (라돈 변환을 이용한 회전된 물체의 효율적인 보정)

  • Cho, Bo-Ho;Jung, Sung-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.291-295
    • /
    • 2008
  • In this paper, we propose an input image reduction method to solve the problems of Radon transform which is a line structure analysis tool to correct a rotated object through a vision system. First we extract an object image removed background from the input image. Then we also select a reduced object image as a final input mage of Radon transform from the object image by considering slope. Finally we extract a rotated angle by using Radon transform with the final input image and correct the rotated object with the angle. In experimental results, we could improve the process time of about 64%, reduce the memory space of about 18% and make progress the line detection rate of about 18%.

Distribution Characteristics of Uranium and Radon Concentrations of Groundwater in Gwangju Area (광주지역 지하수 중 우라늄과 라돈의 함량 분포 특성)

  • Seo, Heejeong;Min, Kyoungwoo;Park, Jiyoung;Park, Juhyun;Hwang, Hoyeon;Park, Seil;Kim, Seonjeong;Jeong, Sukkyung;Bae, Seokjin;Kim, Seongjun
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.2
    • /
    • pp.86-95
    • /
    • 2022
  • Background: As high concentrations of uranium and radon have been detected in some areas in Korea, it is considered necessary to investigate natural radioactive materials in the Gwangju area. Objectives: This study aimed to identify the hydrochemical characteristics of groundwater in Gwangju and investigate the distribution characteristics of uranium and radon, which are naturally radioactive substances. Methods: To determine the uranium and radon concentrations in groundwater according to the geology of the Gwangju area, we measured 62 groundwater wells. A geological distribution map of uranium and radon content was prepared for this study. Results: The groundwater type, defined using a Piper diagram, was mainly Ca-HCO3. The concentration of uranium in the groundwater ranged from 0 to 29.3 ㎍/L, with a mean of 3.3 ㎍/L and a median of 0.9 ㎍/L. The median concentration of uranium in groundwater was highest in alluvium, granitic gneiss, and biotite granite (classified by geological unit), in that order. The concentration of radon in the groundwater ranged from 4.8 to 313.2 Bq/L, with a mean of 75.6 Bq/L and a median of 59.6 Bq/L. The median concentration of radon in groundwater was highest in biotite granite, alluvium, and granitic gneiss, in that order. As a result of the correlation analysis of groundwater in the study area, there was no significant correlation between uranium and radon. Conclusions: In this study area, uranium was shown to be far below the concentrations allowed by drinking water quality standards, but radon concentrations exceeded drinking water quality monitoring standards in 11% of the samples. It was judged that appropriate measures, such as the installation of radon reduction facilities, will be required after a thorough review of high-concentration radon detection sites of in the research area.

Radon concentration measurement at general house in Pusan area (부산지역 일반주택에서의 라돈농도측정)

  • Im, In-Cheol
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.29-33
    • /
    • 2004
  • Until early 1980s we have lived without thinking that radon ruins our health. But, scientists knew truth that radon radioactive danger is bedeviling on indoor that we live for a long time. Specially, interest about effect that get in danger and injury for Radon and human body is inactive in our country. Recently, with awareness for Radon contamination, We inform about importance and danger of Radon in some station of the Seoul subway, indoor air of school facilities and We had interest with measure and manages. Usually, Radon gas emitted in base of building enters into indoor through building floor split windage back among radon or indoor air of radon daughter nucleus contamination is increased. Therefore, indoor radon concentration rises as there are a lot of windages between number pipe of top and bottom and base that enter crack from estrangement of the done building floor, underground to indoor. Thus, Radon enters into indoor through architecture resources water as well as, kitchen natural gas for choice etc., but more than about 85% from earth's crust emit. Danger and injury of health by Radon and Radon daughter nucleus that is indicated for cause of lung cancer incerases content of uranium of soil rises specially from inside pit of High area and a mine, cave, hermetical space with house. Safe sub-officer of radon concentration can not know and danger always exists large or small during. So, Important thing reduces danger of lung cancer by lowering concentration of Radon within house and building. Therefore, is thought that need general house Radon concentration measurement, measured Radon concentration monthly using Sintillator radon monitor. Study finding appeared high all underground market 1 year than the ground, and the winter appeared high than the summer. Specially, month that pass over 4pCi in house that United States Environmental Protection Agency advises appeared in underground, and appeared and know Radon exposure gravity by 4 months during 12 months. Therefore, Thinking that establishment and regulation of norm and preparation of reduction countermeasure about Radon are pressing feels, and inform result that measure Radon concentration.

  • PDF

PREVENTION OF CIGARETTE SMOKE INDUCED LUNG CANCER BY LOW LET IONIZING RADIATION

  • Sanders, Charles L.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.539-550
    • /
    • 2008
  • Lung cancer is the most prevalent global cancer, ${\sim}90%$ of which is caused by cigarette smoking. The LNT hypothesis has been inappropriately applied to estimate lung cancer risk due to ionizing radiation. A threshold of ${\sim}1\;Gy$ for lung cancer has been observed in never smokers. Lung cancer risk among nuclear workers, radiologists and diagnostically exposed patients was typically reduced by ${\sim}40%$ following exposure to <100 mSv low LET radiation. The consistency and magnitude of reduced lung cancer in nuclear workers and occurrence of reduced lung cancer in exposed non-worker populations could not be explained by the HWE. Ecologic studies of indoor radon showed highly significant reductions in lung cancer risk. A similar reduction in lung cancer was seen in a recent well designed case-control study of indoor radon, indicating that exposure to radon at the EPA action level is associated with a decrease of ${\sim}60%$ in lung cancer. A cumulative whole-body dose of ${\sim}1\;Gy$ gamma rays is associated with a marked decrease in smoking-induced lung cancer in plutonium workers. Low dose, low LET radiation appears to increase apoptosis mediated removal of $\alpha$-particle and cigarette smoke transformed pulmonary cells before they can develop into lung cancer.

A Study on Drainage System of Non-motorized For Overtopping and Radon Reduction (무동력 배수시스템을 활용한 도상월류 및 라돈저감방안 연구)

  • Ko, Soung-Gee;Kuk, Yun-Mo;Kim, Man-Hwa;Park, Jong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.208-213
    • /
    • 2011
  • Seoul Metropolitan Rapid Transit Corporation has 148's stations. Total length is 152km and most of the station is located in the basement and Groundwater occur inflow of 700,000 tons per day. Groundwater is treated as a natural flow way instead of artificial ways. Therefore, most of the collection wells is located in the low place or station for the efficient induction and collecting water. Manhole overtopping is occurring frequently because groundwater is concentrated in the drain pipe near the collecting well and heavy rainfall in summer. As a result, ballast contamination and radon levels are increased in tunnel. This paper introduces a solution is increasing overflow in tunnel, which introduces drainage system of non-motorized that uses differencial head between collecting well and manhole.

  • PDF

A study on the reduction of indoor radon contamination (실내 라돈의 오염량 감소에 관한 연구)

  • Kim, Chang-Kyun;Choi, Jong-Hak;Kang, Jeong-Ho
    • Journal of radiological science and technology
    • /
    • v.29 no.2
    • /
    • pp.53-56
    • /
    • 2006
  • The purpose of the present study is to find ways to reduce the quantity of indoor radon contamination. The study was done from July, 2005 until December, 2005. It was found out that the easiest and most effective way to do that is to open the windows as often as possible and let the indoor air flow outside. When it is not possible to ventilate a room, the indoor radon contamination quantity can reduced by providing activated charcoal in the room. It has been proved that activated charcoal can absorb the room in the air. We need more activated charcoal in proportion to the size of the room. A further research is needed to investigate the amount of activated charcoal that will work most effectively.

  • PDF