• Title/Summary/Keyword: radon detector

Search Result 39, Processing Time 0.027 seconds

A study on the Prediction of Indoor Concentration due to Radon Exhalation from Domestic Building Materials (건축자재 라돈 방출에 의한 실내공기 중 라돈농도 예측에 관한 연구)

  • Lee, Cheolmin;Gwak, Yoonkyung;Lee, Donghyun;Lee, Dajeong;Cho, Yongseok
    • Journal of Environmental Science International
    • /
    • v.24 no.9
    • /
    • pp.1131-1138
    • /
    • 2015
  • Radon exhalation rates have been determined for samples of concrete, gypsum board, marble, and tile among building materials that are used in domestic construction environment. Radon emanation was measured using the closed chamber method based on CR-39 nuclear track detectors. The radon concentrations in apartments of 100 households in Seoul, Busan and Gyeonggi Provinces were measured to verify the prediction model of indoor radon concentration. The results obtained by the four samples showed the largest radon exhalation rate of $0.34314Bq/m^2{\cdot}h$ for sample concrete. The radon concentration contribution to indoor radon in the house due to exhalation from the concrete was $31.006{\pm}7.529Bq/m^3$. The difference between the prediction concentration and actual measured concentration was believed to be due to the uncertainty resulting from the model implementation.

A Study on Indoor Radon Concentrations in Urban Area (도시 일부지역에서의 실내 라돈농도에 관한 연구)

  • 김순애;백남원
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.89-98
    • /
    • 2002
  • This study was taken in general hospital, hotel, shopping center, underground cafe, school, house, for the purpose of investigating the distribution of indoor radon concentration in urban area, by E-PERM which approved U.S. EPA, between August and November 1999. There are two sampling Places were exceed 148 ㏃/㎥(4 pCi/L; U.S EPA remedial level), difference mean is 24.0㏃/㎥ when compared with underground vs. aboveground indoor radon concentration in the same building and ratio is 1.6, so underground area is higher than aboveground (p<0.05). Influencing factors were examined. They related to the location of sampler(detector) open or near the door is lower radon concentration than inside portion, which explains probably open area has better ventilated air and dilutes indoor radon concentration. Temperature has a negative relationship (p<0.05) with indoor radon concentration and relative humidity has a positive (p<0.05) Simultaneously to investigate water radon concentration, collected piped-water and the results were very low, which is the same in piped-water concentration other countries. In conclusion, underground indoor radon concentration is higher than aboveground. Concentration was related to sampling spot, open portion is lower than inside. Higher the temperature, lower the indoor radon concentrations. On the other hand higher the relative humidity, higher the indoor radon concentrations. Indoor radon concentration is influenced by sampling point, temperature, relative humidity.

Measurement and Spatial Analysis of Uranium-238 and Radon-222 of Soil in Seoul

  • Oh, Dal-Young;Shin, Kyu-Jin;Jeon, Jae-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • Identification of radon in soil provides information on the areas at risk for high radon exposure. In this study, we measured uranium-238 and radon-222 concentrations in soil to assess their approximate levels in Seoul. A total of 246 soil samples were taken to analyze uranium with ICP-MS, and 120 measurements of radon in soil were conducted with an in-situ radon detector, Rad7 at a depth of 1-1.5 m. The data were statistically analyzed and mapped, layered with geological classification. The range of uranium in soil was from 0.0 to 8.5 mg/kg with a mean value of 2.2 mg/kg, and the range of radon in soil was from 1,887 to $87,320Bq/m^3$ with a mean value of $18,271Bq/m^3$. The geology had a distinctive relationship to the uranium and radon levels in soil, with the uranium and radon concentrations in soils overlying granite more than double those of soils overlying metamorphic rocks.

Effect of Black Charcoal and Activated Carbon for Reduction of Radon Radioactivity that Emitted from Building Materials (건축재료로부터 방출되는 라돈방사능 감소를 위한 흑탄과 활성탄 효과)

  • Cho, Yun-Min;Lee, Hwa-Hyung
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • Recently, interest in indoor air quality is increasing. Especially, radon radioactivity among the indoor air is a well-known risk factor for lung cancer because of ionizing radiation in the form of ${\alpha}$-particles. This study was carried out to investigate effect of black charcoal and activated carbon for reduction of radon radiation that emitted from building materials. Black charcoal and activated carbon were used as a barrier which was against the infiltration of radon. The source of radon was gypsum board. Two types of charcoal barrier were powder- and board-type with 5 mm, 10 mm thickness respectively. The method for this determination is evaluated radon concentration in chamber. The measurements were performed with radon detector, SARAD3120. Results of this study are as following: Black charcoal and activated carbon confirmed the highly efficient barrier. Radon concentration was reduced from 72% to 85% as compared the control chamber. Radon reduction capability, however, was no difference as barrier's types. Results obtained in ventilation condition, radon concentration shows 5.93 pCi/L on average in the closed condition and shows 2.69 pCi/L in the opened condition.

  • PDF

The effect of geometrical parameters on the radon emanation coefficient and different radon parameters

  • Entesar H. El-Araby;A. Azazi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4096-4101
    • /
    • 2023
  • Radon is a radioactive gas produced from the uranium-238 series. Radon gas affects public health and is the second cause of lung cancer. The study samples were collected from one area of the city of Jazan, southwest of the Kingdom of Saudi Arabia. The influence of engineering and physical parameters on the emanation coefficient of gas and other gas parameters was studied. Parameters for radon were measured using a CR-39 Solid-State Nuclear Track Detector (SSNTD) through a sealed emission container. The results showed that the emanation coefficient was affected directly by the change in the grain size of the soil. All parameters of measured radon gas have the same behavior as the emanation coefficient. The relationship between particle size and emanation coefficient showed a good correlation. The values of the emanation coefficient were inversely affected by the mass of the sample, and the rest of the parameters showed an inverse behavior. The results showed that increasing the volume of the container increases the accumulation of radon sons on the wall of the container, which increases the emission factor. The rest of the parameters of radon gas showed an inverse behavior with increasing container size. The results concluded that changing the engineering and physical parameters has a significant impact on both the emanation coefficient and all radon parameters. The emanation coefficient affects the values of the radiation dose of an alpha particle.

Study on the Measurement of Radon concentrations in soil samples using γ-spectrometer (γ-spectrometer를 이용한 토양시료의 라돈농도 측정법에 관한 연구)

  • Kang, Sunga;Lee, Sangsoo;Choi, Guirack;Lee, Junhaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • The radioactive gas radon ($^{222}Rn$), which is generated from the decay process of uranium ($^{238}U$) originating from the soil of more than 85 percent higher the porosity of the soil, the soil can radiate out the possibility that many isotopes. In order to protect the human body from radon, above all, the development of accurate measurement techniques to formulate appropriate measures should be followed. This study Gamma-ray spectrometry using a high purity germanium (HPGe) detector, if you want to measure radon unstable the nature radiation of the background problems can be reduced, radium and radon daughter nuclides after radioactive equilibrium leads to Radon concentration was measured, the soil samples from the Gamma-ray emitting nuclides, and the energy spectrum is analyzed.

Investigation of the relationship between earthquakes and indoor radon concentrations at a building in Gyeongju, Korea

  • Kim, Jae Wook;Joo, Han Young;Kim, Rinah;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.512-518
    • /
    • 2018
  • This article measured and analyzed the indoor radon concentrations at one university building in Gyeongju, Republic of Korea, to investigate if there is any relationship between earthquakes and indoor radon concentration. Since 12 September 2016, when two 5.1 and 5.8 magnitude earthquakes occurred, hundreds of aftershocks affected Gyeongju until January 2017. The measurements were made at the ground floor of the Energy Engineering Hall of Dongguk University in Gyeongju over a period between February 2016 and January 2017. The measurements were made with an RAD7 detector on the basis of the US Environmental Protection Agency measurement protocol. Each measurement was continuously made every 30 minutes over the measurement period every month. Among earthquakes with 2.0 or greater magnitude, the earthquakes whose occurrence timings fell into the measurement periods were screened for further analysis. We observed similar spike-like patterns between the indoor radon concentration distributions and earthquakes: a sudden increase in the peak indoor radon concentration 1-4 days before an earthquake, gradual decrease before the earthquake, and sudden drop on the day of the earthquake if the interval between successive earthquakes was moderately longer, for example, 3 days in this article.

Comparison of Indoor Radon Concentrations in Areas of Jeollabuk-do Province (전라북도 일부지역의 라돈 농도 비교 연구)

  • Yoo, Juhee;Lee, Kyusun;Seo, Sooyun;Kim, Seonhong;Lee, Jeongsub
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.658-667
    • /
    • 2019
  • Objective: This study was designed to compare construction types and seasonal radon concentrations in dwellings in Jeollabuk-do Province in Korea. Methods: The measurement of indoor radon concentrations in 79 dwellings using alpha-track detectors was performed every three months (seasonally) over one year between 2015 and 2016. Also, Radon concentrations in soil were measured in spring to investigate the correlations between the concentrations in soil and indoor air. Results: The annual average concentration of indoor radon for dwellings was 89.7±72.1(GM: 72.4) Bq/㎥, with a range (min-max) of 17.2 to 505.4 Bq/㎥. The highest indoor radon concentration was measured in winter and the lowest was shown in summer. The geometric mean of radon concentration in winter was 1.03-2.58 times higher than other seasons. Radon concentrations in soil were investigated at the depth of 1 m, and the concentrations ranged from 1,780 Bq/㎥ to 123,264 Bq/㎥. This showed low correlations with indoor radon concentrations.

Characteristics of airborne radon and thoron levels monitored in Seoul Subway stations and circulation lines (서울 일부 지하철 공기 중 라돈과 토론 발생 특성)

  • Kwak, Hyunseok;Kim, So-Yeon;Park, Jihoon;Choi, Sangjun;Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.176-184
    • /
    • 2019
  • Objective: This study aims to characterize airborne radon and thoron levels ($Bq/m^3$) generated from working environments in three subway stations in Seoul. Method: A radon and thoron detector (EQF3220) was used to monitor real-time airborne radon and thoron levels ($Bq/m^3$) and their daughters ($Bq/m^3$) every two hours. They were monitored not only in the driver's cabin of seven circulation lines, but also three offices, platforms, and water pump reservoirs in the three stations. Results: The average levels of radon and thoron were $67.9Bq/m^3$ (range; $7.2-619.4Bq/m^3$) and $44.4Bq/m^3$ (range; $4.3-819.2Bq/m^3$), respectively. Notably, higher than legal airborne radon levels ($600Bq/m^3$) were frequently monitored in the driver's cabin of seven circulation lines. Airborne radon levels monitored in the platforms and administrative offices were found to be over $100Bq/m^3$. The average equilibrium factors (F) were 0.12 and 0.06, respectively. The percentages detected were found to be 84.9 for radon and 72.4 for thoron, respectively. Conclusions: Significant airborne radon and thoron levels were frequently found to be generated in subway facilities including water reservoirs, platforms and driver's cabins. Further study is necessary to thoroughly investigate airborne radon and thoron in all subway stations and to devise proper measures.