• Title/Summary/Keyword: radius of influence

Search Result 338, Processing Time 0.024 seconds

Prediction of Turn-down and Roll-in in Hemming Processes through the Comparison between FEA and Experiment (유한요소해석과 실험의 비교를 통한 헤밍 공정에서의 턴다운 및 롤인 결함 예측)

  • Jung H. C.;Lim J. K.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.101-105
    • /
    • 2005
  • Hemming process, composed of flanging, pre-hemming and main hemming, is the last one of a series of forming processes conducted on the automotive panels, having a great influence on the outward appearance of them. The hem quality can be quantitatively defined by the hemming defects including turn-down, warp and roll-in. However, it is difficult to evaluate and predict the hem quality through the experimental measurement or the numerical calculation since the size of defects is very small. This study is focused on how to simulate in the finite element analysis (FEA) the same conditions as in the experiment. The FEA result on turn-down, that was obtained from a finite element model including the spring element linked to the flanging pad, had a good correlation with the experimental data. It was found that the radius of curvature of the flange deeply affects the final hem quality and therefore high rigidity of forming tools and tight assembling tolerance are highly recommended. An over-stroke of the main hemming punch is also proposed to reduce the turn-down.

  • PDF

A Study on Competition Analysis in Retail Distribution Industry Using GIS in Seoul

  • YOO, Byong-Kook;KIM, Soon-Hong
    • Journal of Distribution Science
    • /
    • v.19 no.3
    • /
    • pp.49-60
    • /
    • 2021
  • Purpose: This study aims to utilize geographic data to analyze how various retail formats of large-scale stores around the traditional market affect the performance of the traditional market in Seoul, Korea. Research design, data, and methodology: The two types of catchment areas were demarcated (circle of 1km radius and Thiessen polygon) for each traditional market, and the large-scale stores located within each catchment area were identified for 153 traditional markets in Seoul, Korea. Additionally, multiple regression analysis was utilized. Results: The results revealed that the influence on the performance of the traditional markets were different depending on the retail format of the large-scale stores. Large discount stores were found to have a negative effect on the sales and the visitors of traditional markets, whereas complex shopping malls and department stores had a positive effect on the traditional markets. Conclusions: As a result of the differences in the retail format such as product categories and leisure functions, the impact of some large-scale stores on the traditional market may have a greater agglomeration effect than the consumer churn effect. Therefore, it is suggested that in the regulation of these large-scale stores, the differences in retail format should be considered for the future.

The Characteristic Analysis of Leaf Springs with Large Free Camber and without Spring Eye (아이부를 갖지 않고 자유고가 큰 겹판스프링의 특성해석)

  • Choi, Sun-Jun;Kwon, Hyuk-Hong;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.88-97
    • /
    • 1995
  • The leaf spring is used in the suspension of most buses and trucks due to its compactness, which reduces the shock-force and the vibration from the road, and increases passenger comfortability and carlife. Of the various kinds of leaf springs, the leaf spring without eyes can be found easily in the heavy duty truck, and has different characteristics to the leaf spring with eyes in the case of large free camber. Because of radius change, the leaf without eyes slips on the supports, which makes the deflection. The difference is due to this deflection. In this paper, we show the general method of characteristic analysis, for example, Pandan method, can be no more applicable to these springs. Thus considering the geometry deflection by slip, we have developed the equation of the characteristic of the leaf spring without eyes and prove the effectiveness of this equation by experiment. From the result, at large camber the slip deflection is large and as camber smaller, this is smaller. At the camber behind some value, the effect of slip no longer influence to the characteristic of leaf springs.

  • PDF

Evaluation of Fatigue Strength in Scallop at Field Bolted Joints of Longitudinal Rib and Deck Plate in Orthotropic Steel Decks (강바닥판 데크플레이트와 종리브 현장연결 스캘럽부의 피로강도 평가)

  • Choi, Dong Ho;Choi, Hang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.683-690
    • /
    • 2002
  • Static and fatigue tests were performed to evaluate fatigue strength in scallop at field bolted joints of longitudinal rib and deck plate in orthotropic steel decks. Numerical parametric studies using finite elemtn analysis were also conducted to show the influence of parameters such as length and radius of scallop, and thickness of deckplate on the stress concentration at the scallop. In the low stress level, fatigue tests yielded cracks at the scallop while in the high stress level, catastrophic failure of longitudinal rib occurred following the failure of handhole cover plate. Fatigue strength was compared with JSSC specification and the predicted S-N curves using Shigley and Juvinall methods, and a satisfactory result was obtatined.

A Study on the Robust Compensator of An Inverted Pendulum Using $H_{\infty}$ Optimal Control Theory ($H_{\infty}$ 최적제어 이론을 이용한 도립진자의 견실한 보상기 설계에 관한 연구)

  • 김대현;정규홍;이석재;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.213-218
    • /
    • 1991
  • A new model which contains the dynamics of the motor system and the kinematics of the timing belt system is derived for an inverted pendulum system in FAPA Lab. Generalized standard compensator configuration(SCC) which contains the variable design parameters Kl, K2, .., K5 is proposed so that any desired design specification can be achieved. The robust controller which has robust property against the influence of sensor noise, system parameter variation and model uncertainty is designed minimizing the H$_{\infty}$-norm of transfer function from exogenous input to controlled output. The method of solving the two Riccati equations in state space and determining the controller uses on iteration method where the unique stabilizing solution to two algebraic Riccati equation must be positive definite and the spectral radius of their product less than .gamma.$^{2}$. Some cases are derived by varying the design parameter for simulation on a digital computer and experimenting the H$_{\infty}$- controller on an analog computer. The design parameters of controller which satisfies the desired control specification is selected on the basis of the simulation result and experimenting. The reasonableness and validity of the simulation and the robustness of the controller is established.d.

  • PDF

Finite element modeling of contact between an elastic layer and two elastic quarter planes

  • Yaylaci, Murat;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • In this study, a two dimensional model of receding contact problem has been analyzed using finite element method (FEM) based software ANSYS and ABAQUS. For this aim finite element modeling of elastic layer and two homogeneous, isotropic and symmetrical elastic quarter planes pressed by means of a rigid circular punch has been presented. Mass forces and friction are neglected in the solution. Since the problem is examined for the plane state, the thickness along the z-axis direction is taken as a unit. In order to check the accuracy of the present models, the obtained results are compared with the available results of the open literature as well as the results of two software are compared using Root Mean Square Error (RMSE) and good agreements are found. Numerical analyses are performed considering different values of the external load, rigid circular radius, quarter planes span length and material properties. The contact lengths and contact stresses of these values are examined, and their results are presented. Consequently, it is concluded that the considered non-dimensional quantities have noteworthy influence on the contact lengths and contact stress distributions, additionally if FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

A Numerical Study on the Spray-to-Spray Impingement System

  • Lee, Seong-Hyuk;Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.235-245
    • /
    • 2002
  • The present article aims to perform numerical calculations for inter-spray impingement of two diesel sprays under a high injection pressure and to propose a new hybrid model for droplet collision on the basis of literature findings. The hybrid model is compared with the original O'Rourke's model, which has been widely used for spray calculations. The main difference between the hybrid model and the O'Rourke's model is mainly in determination of the collision threshold condition, in which the preferred directional effect of droplets and a critical collision radius are included. The Wave model involving the cavitation effect inside a nozzle is used for predictions of atomization processes. Numerical results are reported for different impingement angles of 60°and 90°in order to show the influence of the impinging angle on spray characteristics and also compared with experimental data. It is found that the hybrid model shows slightly better agreement with experimental data than the O'Rourke's model.

The finite difference analysis on temperature distribution by coordinate transformation during melting process of phase-change Material (상변화 물질의 용융과정에 있어서 좌표변환을 이용한 온도분포의 해석적 연구)

  • Kim, J.K.;Yim, J.S.
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1985
  • An analysis is performed to investigate the influence of the buoyancy force and the thickness variation of melting layer in the containment that is filled with phase-change Material surrounding a cylindrical heating tube during melting process. The phase-change material is assumed to be initially solid at its phase-change temperature and the remaining solid at any given time is still at the phase-change temperature and neglecting the effect of heat transfer occuring within the solid. At the start of melting process, the thickness of melting layer is assumed to be a stefan-problem and after the starting process, the change of temperature and velocity is calculated using a two dimensional finite difference method. The governing equations for velocity and temperature are solved by a finite difference method which used SIMPLE (Semi Implicit Method Pressure linked Equations) algorithm. Results are presented for a wide range of Granshof number and in accordance with the time increment and it is founded that two dimensional fluid flow occurred by natural convection decreases the velocity of melting process at the bottom of container. The larger the radius of heating tube, the higher heat transfer is occurred in the melting layer.

  • PDF

A Parametric Study of the Hemming Process by Finite Element Analysis (유한요소해석에 의한 헤밍 공정 변수연구)

  • Kim, Hyung-Jong;Choi, Won-Mog;Lim, Jae-Kyu;Park, Chun-Dal;Lee, Woo-Hong;Kim, Heon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.149-157
    • /
    • 2004
  • Implicit finite element analysis of the flat surface-straight edge hemming process is performed by using a commercial code ABAQUS/Standard. Methods of finite element modeling for springback simulation and contact pair definition are discussed. An optimal mesh system is chosen through the error analysis that is based on the smoothing of discontinuity in the state variables. This study has focused on the investigation of the influence of process parameters in flanging, pre-hemming and main hemming on final hem quality, which can be defined by turn-down, warp and roll-in. The parameters adopted in this parametric study are flange length, flange angle, flanging die corner radius, face angle and insertion angle of pre-hemming punch, and over-stroke of pre-hemming and main hemming punches.

Effect of the Droplet Volume on the Evaporative Characteristics of Sessile Droplet (액적 체적이 증발 특성에 미치는 영향에 관한 수치해석 연구)

  • Jeong, Chan Ho;Lee, Hyung Ju;Kim, Hong Seok;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • This study aims to investigate the influence of the droplet volume on the evaporation characteristics of the sessile droplet. In particular, the effect of the free convection in the vapor domain on the evaporation rate was analyzed through the numerical simulation. The commercial code of the ANSYS Fluent (V.2020 R2) was used to simulate the heat transfer in the liquid-vapor domain. Moreover, we used the diffusion model to estimate the evaporation rate for the different droplet volume under the room temperature. It was found that the evaporation rate significantly increases with the droplet volume because of the larger surface area for the mass transfer. Also, the effect of free convection on the evaporation rate becomes significant with an increment of droplet volume owing to the increase in the droplet radius corresponding to the characteristic length of the free convection.