• 제목/요약/키워드: radiosonde observation

Search Result 68, Processing Time 0.023 seconds

Analysis of Vertical Structure of Atmosphere on the Middle Part of the Yellow Sea (서해 중부 해상 대기의 연직구조 분석)

  • Yun, Yong Hun;Im, Ju Yeon;Kim, Baek Jo;Kim, Tae Hui;Seo, Jang Won;Jo, Ha Man
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.22-22
    • /
    • 2000
  • To search out the characteristics of the lower and the upper atmospheric vertical structure, we selected the island(Oeyoundori Ochun-myen Poryeng city Chung-Nam) as an observation site, which is thought to represent the characteristics of ocean well, and observed the vertical structure of the atmosphere by Radiosonde. By using the results of the observation, we analyzed the changes of relative humidity(RH), temperature and wind when the cyclone and the anticyclone passed and compared the results in case of each event. To compare the vertical structure of the ocean atmosphere with those of the continent, we analyzed the values observed with using Radiosonde at Osan site.Through this study, we found that relative humidity changed as the cyclone and the anticyclone passed. That is, when the cyclone came, RH increased first in the upper atmosphere than in the lower and when the high came, RH in the upper decreased sharply to 10%. And the variations of relative humidity in ocean are bigger than those in continent. In the future, we plan to find out the relation between the vapor water in ocean and continent seasonally and daily through the observation in ocean and continent at same time.

Analysis of Vertical Structure of Atmosphere on the Middle Part of the Yellow Sea (서해 중부 해상 대기의 연직구조 분척)

  • Youn, Yong-Hoon;Lim, Joo-Yun;Kim, Baek-Jo;Kim, Tae-Hee;Seo, Jang-Won;Cho, Ha-Man
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.23-39
    • /
    • 2000
  • To search out the characteristics of the lower and the upper atmospheric vertical structure, we selected the island(Oeyoundori Ochun-myen Poryeng city Chung-Nam) as an observation site, which is thought to represent the characteristics of ocean well, and observed the vertical structure of the atmosphere by Radiosonde. By using the results of the observation, we analyzed the changes of relative humidity(RH), temperature and wind when the cyclone and the anticyclone passed and compared the results in case of each event. To compare the vertical structure of the ocean atmosphere with those of the continent we analyzed the values observed with using Radiosonde at Osan site. Through this study, we found that relative humidity changed as the cyclone and the anticyclone passed. That is, when the cyclone came, RH increased first in the upper atmosphere than in the lower and when the high came, RH in the upper decreased sharply to 10%. And the variations of relative humidity in ocean are bigger than those in continent. In the future, we plan to f d out the relation between the vapor water in ocean and continent seasonally and daily through the observation in ocean and continent at same time.

  • PDF

A Study on Occurrence Frequency of Cloud for Altitude in the Central Region of the Korean Peninsula using Upper-Air Observation Data (고층기상관측자료를 이용한 한반도 중부지방의 고도별 구름 발생빈도 연구)

  • Kim, In Yong;Park, Hyeryeong;Kim, Min Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.716-723
    • /
    • 2019
  • It is crucial to understand the characteristics of cloud occurrence frequency for development of high precision guided missile using infrared imaging sensor. In this paper, we investigated the vertical structure of cloud for altitude using upper-air observation data. We find that cloud occurrence frequency is high at altitudes of 1.3 km and 9.5 km. Theses features have seasonal and temporal dependency. In the summer, cloud often occur more than average regardless of altitude. In the winter, low clouds occur frequently, and high clouds do not occur well. In temporal characteristics, clouds occur more frequently in daytime than in nighttime regardless of altitude. Many of clouds exist in single layer or double layers in the air. We also find that the 40 % of cloud occurrence frequency at high altitude when low clouds under altitude of 2 km cover entire sky.

A Study on the Characteristics of Convective Activities related to Atmospheric Stability Index and Thunderstorms over the Naro Space Center (나로우주센터 상공의 대기 안정도지수 및 뇌운관련 대류활동 특성 연구)

  • Kim, Hong-Il;Choi, Eun-Ho;Seo, Seong-Gyu
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1133-1145
    • /
    • 2019
  • Successful launch requires state-of-the-art launch vehicle technology and constant test operations, However, the meteorological threat to the launch vehicle flight trajectory is also an important factor for launch success. Atmospheric stability above the Naro Space Center at the this time is very important, especially because the initial flight operation can determine the success of the launch. Moreover, during the flight of launch vehicle with rapid pressure and thrust into the atmosphere, convection activity in the atmosphere may create environmental conditions that cause severe weather threats such as thunderstorms. Hence, studies of atmospheric instability characteristics over the Naro Space Center are a necessary part of successful launch missions. Therefore, the main aims of this study were to (1) verify the atmospheric stability index and convection activity characteristics over the Naro Space Center using radiosonde data observed from 2007 to 2018 by the Naro Space Center, (2) analyze changes in the atmospheric stability index according to monthly and seasonal changes, and (3) assess how the calculated atmospheric stability index is related to actual thunderstorm occurrence using statistical analysis. Additionally, we aimed to investigate the atmospheric characteristics above the Naro Space Center through the distribution chart of the atmospheric stability index during summer, when convection activity is highest. Finally, we assessed the relationship between lightning occurrence and unstable atmospheric conditions, through predictability analysis performed using the lightning observation data of the Korea Meteorological Administration.

Estimation of Surface Layer Heat Flux Using the UHF Sensor Installed on UAV (UHF 센서 탑재 UAV를 이용한 지표층 열 플럭스 산출)

  • Kim, Min-Seong;Kwon, Byung Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.265-276
    • /
    • 2018
  • Observation and data analysis techniques have been developed for observational blind areas in the lower atmosphere that are difficult to be monitored with fixed equipment on the ground. The vertical data of temperature and relative humidity are remotely collected by the UHF radiosonde installed on UAV and compared with the data measured in the 10 m weather tower. From the validated vertical profile, extrapolated surface temperature and the bulk transfer method were used to estimate the sensible heat flux depending on the atmospheric stability. Compared with the sensible heat flux measured by the 3-dimensional ultrasonic anemometer on the ground, the error of the sensible heat flux estimated was 23% that is less than the range of 30% allowed in the remote sensing. Estimated atmospheric boundary layer height from UAV sensible heat fluxes can provide useful data for air pollution diffusion models in real time and economically.

Vertical Structure of the Coastal Atmospheric Boundary Layer Based on Terra/MODIS Data (Terra/MODIS 자료를 이용한 연안 대기경계층의 연직구조)

  • Kim, Dong Su;Kwon, Byung Hyuk
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.281-289
    • /
    • 2007
  • Micrometeorlogical and upper air observation have been conducted in order to determine the atmospheric boundary layer depth based on data from satellite and automatic weather systems. Terra/MODIS temperature profiles and sensible heat fluxes from the gradient method were used to estimate the mixed layer height over a coastal region. Results of the integral model were in good agreement with the mixed layer height observed using GPS radiosonde at Wolsung ($35.72^{\circ}N$, $129.48^{\circ}E$). Since the variation of the mixed layer height depends on the surface sensible heat flux, the integral model estimated properly the mixed layer height in the daytime. The buoyant heat flux, which is more important than the sensible heat flux in the coastal region, must be taken into consideration to improve the integral model. The vertical structure of atmospheric boundary layer can be analyzed only with the routine data and the satellite data.

Development of Time-dependent mean Temperature Equations for GPS Meteorology

  • Ha, Jihyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.143-147
    • /
    • 2014
  • The mean temperature is one of the key parameters in computing Precipitable Water Vapor (PWV) from Global Positioning System (GPS) measurements and is usually derived as a function of surface temperature through the use of a mean temperature equation (MTE). In this study, two new types of MTEs were developed as functions solely of the observation time so that the mean temperature can be obtained without surface temperature measurements. To validate the new models, we created one-year time series of GPS-derived PWV using the new MTEs and compared them with the radiosonde-observed PWV. The bias and root-mean-square error were on the other of ~1 mm and ~2 mm, respectively.

Sensitivity Experiments of Vertical Resolution and Planetary Boundary Layer Parameterization Schemes on the Seoul Metropolitan Area using WRF Model (수도권 지역의 고해상도 WRF 모델 기반 연직 해상도 및 경계층 모수화 방안 민감도 실험)

  • Lim, A-Young;Roh, Joon-Woo;Jee, Joon-Bum;Choi, Young-Jean
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.553-566
    • /
    • 2015
  • The effects of vertical resolutions and planetary boundary layer (PBL) physics schemes in a numerical simulation with a very high resolution over the metropolitan area were investigated. The numerical experiments using the Weather Research and Forecast model were conducted from 0000 UTC 25 October to 0000 UTC 26 October 2013. We verified the numerical results against with six hourly observation data from the radiosonde at Seolleung, which was located in southern part of Seoul, and forty three auto weather systems in Seoul. In the experiments of vertical resolutions in low level atmosphere with 44, 50, and 60 layers, which are set to be subdivided particularly under 2 km height. The experiment in 60 layers, which has the highest vertical resolution in this study, showed relatively a clear diurnal variation of PBL heights. Especially, the difference of PBL heights and 10-meter wind fields were mainly seen in the area of high altitude lands for the experiments of vertical resolution. In the sensitivity experiment of PBL schemes such as asymmetric convective model-version 2 (ACM2), Yonsei University (YSU), and Mellow-Yamada-Janjic (MYJ) to the temperature, all three PBL schemes revealed lower temperature than observed profile from the radiosonde in the entire period. The experiments with YSU PBL and ACM2 PBL schemes show relatively less biased in comparison with the experiment of the MYJ PBL scheme.

Estimation of Total Precipitable Water from MODIS Infrared Measurements over East Asia (MODIS 적외 자료를 이용한 동아시아 지역의 총가강수량 산출)

  • Park, Ho-Sun;Sohn, Byung-Ju;Chung, Eui-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.309-324
    • /
    • 2008
  • In this study the retrieval algorithms have been developed to retrieve total precipitable water (TPW) from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) infrared measurements using a physical iterative retrieval method and a split-window technique over East Asia. Retrieved results from these algorithms were validated against Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) over ocean and radiosonde observation over land and were analyzed for investigating the key factors affecting the accuracy of results and physical processes of retrieval methods. Atmospheric profiles from Regional Data Assimilation and Prediction System (RDAPS), which produces analysis and prediction field of atmospheric variables over East Asia, were used as first-guess profiles for the physical retrieval algorithm. We used RTTOV-7 radiative transfer model to calculate the upwelling radiance at the top of the atmosphere. For the split-window technique, regression coefficients were obtained by relating the calculated brightness temperature to the paired radiosonde-estimated TPW. Physically retrieved TPWs were validated against SSM/I and radiosonde observations for 14 cases in August and December 2004 and results showed that the physical method improves the accuracy of TPW with smaller bias in comparison to TPWs of RDAPS data, MODIS products, and TPWs from split-window technique. Although physical iterative retrieval can reduce the bias of first-guess profiles and bring in more accurate TPWs, the retrieved results show the dependency upon initial guess fields. It is thought that the dependency is due to the fact that the water vapor absorption channels used in this study may not reflect moisture features in particular near surface.

A Study of Line-shaped Echo Detection Method using Naive Bayesian Classifier (나이브 베이지안 분류기를 이용한 선에코 탐지 방법에 대한 연구)

  • Lee, Hansoo;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.360-365
    • /
    • 2014
  • There are many types of advanced devices for weather prediction process such as weather radar, satellite, radiosonde, and other weather observation devices. Among them, the weather radar is an essential device for weather forecasting because the radar has many advantages like wide observation area, high spatial and time resolution, and so on. In order to analyze the weather radar observation result, we should know the inside structure and data. Some non-precipitation echoes exist inside of the observed radar data. And these echoes affect decreased accuracy of weather forecasting. Therefore, this paper suggests a method that could remove line-shaped non-precipitation echo from raw radar data. The line-shaped echoes are distinguished from the raw radar data and extracted their own features. These extracted data pairs are used as learning data for naive bayesian classifier. After the learning process, the constructed naive bayesian classifier is applied to real case that includes not only line-shaped echo but also other precipitation echoes. From the experiments, we confirm that the conclusion that suggested naive bayesian classifier could distinguish line-shaped echo effectively.