DOI QR코드

DOI QR Code

Estimation of Surface Layer Heat Flux Using the UHF Sensor Installed on UAV

UHF 센서 탑재 UAV를 이용한 지표층 열 플럭스 산출

  • 김민성 (부경대학교 지구과학연구소) ;
  • 권병혁 (부경대학교 환경대기과학과) ;
  • 윤홍주 (부경대학교 공간정보시스템공학과)
  • Received : 2018.01.23
  • Accepted : 2018.02.15
  • Published : 2018.02.28

Abstract

Observation and data analysis techniques have been developed for observational blind areas in the lower atmosphere that are difficult to be monitored with fixed equipment on the ground. The vertical data of temperature and relative humidity are remotely collected by the UHF radiosonde installed on UAV and compared with the data measured in the 10 m weather tower. From the validated vertical profile, extrapolated surface temperature and the bulk transfer method were used to estimate the sensible heat flux depending on the atmospheric stability. Compared with the sensible heat flux measured by the 3-dimensional ultrasonic anemometer on the ground, the error of the sensible heat flux estimated was 23% that is less than the range of 30% allowed in the remote sensing. Estimated atmospheric boundary layer height from UAV sensible heat fluxes can provide useful data for air pollution diffusion models in real time and economically.

지상에 고정된 기기로 감시하기 어려운 대기 하층의 관측 사각 지역에서 유용한 관측 및 자료 분석 기술을 개발하였다. 상층 기상 관측에 사용되는 UHF 라디오존데를 UAV에 탑재하여 기온과 상대습도의 연직 자료를 원격 수집하여 10 m 기상 타워에서 측정한 자료와 비교하였다. 검증된 연직 분포로부터 외삽된 지표 기온과 총체 전달 방법을 이용하여 대기 안정도 변화에 따른 현열 플럭스를 추정하였다. 지상에서 3차원 초음파 풍속계로 측정한 현열 플럭스와 비교한 결과는 원격탐사로 산출되는 현열 플럭스에 허용되는 오차 범위 30%보다 작은 23% 이내의 오차를 보였다. UAV 관측 현열 플럭스로부터 추정한 대기경계층 고도는 대기 오염 확산 모델에 유용한 자료를 실시간, 경제적으로 제공할 수 있다.

Keywords

References

  1. S. Lee and H. Yoo, "Verification of the model-predicted mixed layer height using wind profiler data," Atmosphere, vol. 1, no. 1, 2005, pp. 1-13. https://doi.org/10.3390/atmos1010001
  2. T. Spiess, J. Bange, M. Buschmann, and P. Vorsmann, "First application of the meteorological mini-UAV 'M2AV'," Meteor. Z., vol. 16, no. 2, 2007, pp. 159-169. https://doi.org/10.1127/0941-2948/2007/0195
  3. A. Houston, B. Argrow, J. Elston, J. Lahowetz, E. Frew, and P. Kennedy, "The collaborative Colorado-Nebraska Unmanned Aircraft System Experiment," Bull. Amer. Meteor. Soc., vol. 93, no. 1, 2012, pp. 39-54. https://doi.org/10.1175/2011BAMS3073.1
  4. C. Corrigan, G. Roberts, M. Ramana, D. Kim, and V. Ramanathan, "Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles," Atmos. Chem. Phys., vol. 8, no. 3, 2008, pp. 737-747. https://doi.org/10.5194/acp-8-737-2008
  5. V. Kroonenberg, A. Martin, F. Beyrich, and J. Bange, "Spatially-averaged temperature structure parameter over a heterogenous surface measured by an unmanned aerial vehicle," Bound.-Layer Meteor., vol. 142, no. 1, 2012, pp. 55-77. https://doi.org/10.1007/s10546-011-9662-9
  6. T. Bonin, P. Chilson, B. Zielke, and J. Leeman, "Comparison and application of wind retrieval algorithms for small unmanned aerial systems," Geosci. Instrum. Methods Data Syst., vol. 2, no. 2, 2013, pp. 177-187. https://doi.org/10.5194/gi-2-177-2013
  7. R. Palomaki, N. Rose, M. Bossche, T. Sherman, and S. Wekker, "Wind estimation in the lower atmosphere using multirotor aircraft," J. Atmos. Ocean. Technol,. vol. 34, no. 5, 2017, pp. 1183-1191. https://doi.org/10.1175/JTECH-D-16-0177.1
  8. H. Hoffmann, H. Nieto, R. Jensen, R. Guzinski, P. Zarco-Tejada, and T. Friborg, "Estimating evaporation with thermal UAV data and two-source energy balance models," Hydrol. Earth Syst. Sci., vol. 20, no. 2, 2016, pp. 697-713. https://doi.org/10.5194/hess-20-697-2016
  9. H. Hoffmann, R. Jensen, R. A. Thomsen, H. Nieto, J. Rasmussen, and T. Friborg, "Crop water stress maps for an entire growing season from visible and thermal UAV imagery," Biogeosciences, vol. 13, no. 24, 2016, pp. 6545-6563. https://doi.org/10.5194/bg-13-6545-2016
  10. S. Ortega-Farίas, and Coauthors, "Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV)," Remote Sense., vol. 8, no. 8, 2016, pp. 621-638. https://doi.org/10.3390/rs8080621
  11. T. Lee, B. Michael, and D. Edward, "A new technique to estimate sensible heat fluxes around micrometeorological towers using small unmanned aircraft system," J. Atmos. Ocean. Technol., vol. 34, no. 9, 2017, pp. 2103-2112. https://doi.org/10.1175/JTECH-D-17-0065.1
  12. M. Harvey, J. Rowland, and K. Luketina, "Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand," J. Volcanol. Geotherm. Res., vol. 325, no. 1, 2016, pp. 61-69. https://doi.org/10.1016/j.jvolgeores.2016.06.014
  13. A. Krauchi, R. Philipona, G. Romaneus, D. Hurst, E. Hall, and F. Jordan, "Controlled weather ballon ascents and descents for atmospheric research and climate monitoring," Atoms. Meas. Tech., vol. 9, no. 3, 2016, pp. 929-938. https://doi.org/10.5194/amt-9-929-2016
  14. D. Vickers, and L. Mahrt, "Quality control and flux sampling problems for tower and aircraft data," J. Atmos. Ocean. Tech., vol. 14, no. 3, 1997, pp. 512-526. https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
  15. S. Park, S. Choi, ,J. Kang, D. Kim, D. Moon, W. Choi, J. Kim and Y. Lee, "Effects of differential heating by land-use types on flow and air temperature in an urban area," Korean Journal of Remote Sensing, vol. 32, no. 6, 2016, pp. 603-616. https://doi.org/10.7780/kjrs.2016.32.6.5
  16. R. Stull, An Introduction to boundary layer meteorology. Dordrecht: Kluwer Academic, 1988, pp. 666.
  17. J. Garratt, "Review of drag coefficient over oceans and continents," Mon. Weather Rev., vol. 105, no. 7, 1977, pp. 915-929. https://doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2
  18. G. Stanhill, "A simple instrument for field measurement of turbulent diffusion flux," J. Appl. Meteorol., vol. 8, no. 4, 1969, pp. 509-513. https://doi.org/10.1175/1520-0450(1969)008<0509:ASIFTF>2.0.CO;2
  19. M. Kim, B. Kwon, and D. Kang, "Estimation of atmospheric turbulent fluxes by the bulk transfer method over various surface," Journal of Environmental Science International, vol. 23, no. 6, 2014, pp. 1199-1211. https://doi.org/10.5322/JESI.2014.23.6.1199
  20. S. Arya, Introduction to micrometeorology. San Diego: Academic Press, 2001, pp. 420.
  21. H. Zhang, and S. Park, "Bulk transfer coefficients over different surfaces," J. of Korean Meteor. Soc., vol. 34, no. 4, 1998, pp. 664-669.
  22. S. Burns, T. Horst, L Jacobsen, P. Blanken, and R. Monson, "Using sonic anemometer temperature to measure sensible heat flux in strong winds," Atmos. Meas. Tech,, vol. 5, no. 9, 2012, pp. 2095-2011. https://doi.org/10.5194/amt-5-2095-2012
  23. B. Kwon, B. Benech, D. Lambert, P. Durand, A. Druilhet, A. Giordani, and H. Planton, "Structure of the marine atmospheric boundary layer over an oceanic thermal front. SEMAPHORE experiment," J. Geophys. Res., vol. 103, no. C11, 1998, pp. 25159-25180. https://doi.org/10.1029/98JC02207
  24. D. Carson, "The development of a dry inversion-capped convectively unstable boundary layer," Quart. J. Roy. Meteorol. Soc., vol. 99, no. 421, 1973, pp. 450-467. https://doi.org/10.1002/qj.49709942105
  25. H. Tennekes, "A model for the dynamics of the inversion above a convective boundary layer," J. Atmos. Sci., vol. 30, no. 4, 1973, pp. 558-567. https://doi.org/10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2
  26. Y. Jo, I. Yoon, S. Kim, and H. Park, "A study on the MAC(Media Access Control) protocol for unmanned aerial vehicle(UAV)," J. of the Korean Institute of Electronic Communication Sciences, vol. 11, no. 1, 2016, pp. 119-124. https://doi.org/10.13067/JKIECS.2016.11.1.119
  27. D. Yoon, K. Lee, S. Han, Y. Kim, and S. Lee, "A study on flight stabilization of drones by Gyro seonsor and PID control," J. of the Korean Institute of Electronic Communication Sciences, vol. 12, no. 4, 2017, pp. 591-598.