• Title/Summary/Keyword: radiometric features

Search Result 28, Processing Time 0.016 seconds

Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter (변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리)

  • Kim, Taeheon;Lee, Won Hee;Yeom, Junho;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Satellite imagery occurs geometric and radiometric errors due to external environmental factors at the acquired time, which in turn causes false-alarm in change detection. These errors should be eliminated by geometric and radiometric corrections. In this study, we propose a methodology that automatically and simultaneously performs geometric and radiometric corrections by using the SURF (Speeded-Up Robust Feature) algorithm and the mask filter. The MPs (Matching Points), which show invariant properties between multi-temporal imagery, extracted through the SURF algorithm are used for automatic geometric correction. Using the properties of the extracted MPs, PIFs (Pseudo Invariant Features) used for relative radiometric correction are selected. Subsequently, secondary PIFs are extracted by generated mask filters around the selected PIFs. After performing automatic using the extracted MPs, we could confirm that geometric and radiometric errors are eliminated as the result of performing the relative radiometric correction using PIFs in geo-rectified images.

Radiometric Characteristics of KOMPSAT EOC Data Assessed by Simulating the Sensor Received Radiance

  • Kim, Jeong-Hyun;Lee, Kyu-Sung;Kim, Du-Ra
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.281-289
    • /
    • 2002
  • Although EOC data have been frequently used in several applications since the launch of the KOMPSAT-1 satellite in 1999, its radiometric characteristics are not clear due to the inherent limitations of the on-board calibration system. The radiometric characteristics of remotely sensed imagery can be measured by the sensitivity of radiant flux coming from various surface features on the earth. The objective of this study is to analyze the radiometric characteristics of EOC data by simulating the sensor- received radiance. Initially, spectral reflectance values of reference targets were measured on the ground by using a portable spectre-radiometer at the EOC spectrum. A radiative transfer model, LOWTRAN, then simulated the sensor-received radiance values of the same reference target. By correlating the digital number (DN) extracted from the EOC image to the corresponding radiance values simulated from LOWTRAN, we could find the radiometric calibration coefficients for EOC image. The radiometric gain coefficients of EOC are very similar to those of other panchromatic optical sensors.

Comparison of Digital Radiometric Features between Radicular Cysts and Periapical Granulomas (치근단낭과 육아종의 디지털방사선학적 비교연구)

  • Jin Yeon-Hwa;Lee Keon-Il
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.241-254
    • /
    • 1999
  • The purpose of this study was to investigate whether a radiometric analysis of radicular cysts and periapical granulomas is useful in the differential diagnosis. In this experiment, twenty-nine periapical radiographs of the radicular cyst and those periapical granuloma were used. The periapical radiography was taken by intraoral paralleling device. The X-ray film was digitized and digitally filtered to reduce film-grain noise. We estimated density difference of the inner/outer area, roundness or circularity, bone profile or scan line of the margin and cumulative percentage frequency curve of radicular cyst & periapical granuloma. The obtained results were as follows; 1. The differences in density between ROIs of inner and outer area of radicular cysts were smaller than those of periapical granulomas. 2. The equivalent circular diameter was over 6.3mm, there was significant difference between periapical cyst and periapical granuloma. 3. In differential diagnosis of radicular cyst and periapical granuloma using bone profile. sensitivity. specificity and accuracy were considerably high(0.83. 0.86. 0.86) respectively. 4. Cumulative percentage frequency curve of the radicular cyst was closer to the pseudo-pixel value of 50 than average curve, whereas periapical granuloma was closer to that of 0. Hence we conclude that digital radiometric features might be useful in the differential diagnosis between radicular cyst and periapical granuloma.

  • PDF

Relative Radiometric Normalization of Hyperion Hyperspectral Images Through Automatic Extraction of Pseudo-Invariant Features for Change Detection (자동 PIF 추출을 통한 Hyperion 초분광영상의 상대 방사정규화 - 변화탐지를 목적으로)

  • Kim, Dae-Sung;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.129-137
    • /
    • 2008
  • This study focuses on the radiometric normalization, which is one of the pre-processing steps to apply the change detection technique fur hyperspectral images. The PIFs which had radiometric consistency under the time interval were automatically extracted by applying spectral angle, and used as sample pixels for linear regression of the radiometric normalization. We also dealt with the problem about the number of PIFs for linear regression with iteratively quantitative methods. The results were assessed in comparison with image regression, histogram matching, and FLAASH. In conclusion, we show that linear regression method with PIFs can carry out the efficient result for radiometric normalization.

Change Detection of Land-cover from Multi-temporal KOMPSAT-1 EOC Imageries

  • Ha, Sung-Ryong;Ahn, Byung-Woon;Park, Sang-Young
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • A radiometric correction method is developed to apply multi-temporal KOMPSAT-1 EOC satellite images for the detection of land-cover changes b\ulcorner recognizing changes in reflection pattern. Radiometric correction was carried out to eliminate the atmospheric effects that could interfere with the image properly of the satellite data acquired at different multi-times. Four invariant features of water, sand, paved road, and roofs of building are selected and a linear regression relationship among the control set images is used as a correction scheme. It is found that the utilization of panchromatic multi-temporal imagery requires the radiometric scene standardization process to correct radiometric errors that include atmospheric effects and digital image processing errors. Land-cover with specific change pattern such as paddy field is extracted by seasonal change recognition process.

A Study on Extraction of Non-metallic Ore Deposits from Remote Sensing Data of the Haenam Area (원격탐사자료에 의한 해남지역 비금속광상 및 관련 특성 추출을 위한 연구)

  • 박인석;박종남
    • Korean Journal of Remote Sensing
    • /
    • v.8 no.2
    • /
    • pp.105-123
    • /
    • 1992
  • A study was made on the feature extraction for non-metallic one deposits and their related geology using the Remote Sensing and Airborne Radiometric data. The area chosen is around the Haenam area, where dickite and Quarzite mines are distributed in. The geology of the area consists mainly of Cretaceous volcanics and PreCambrian metamorphic. The methods applied are study on the reflectance characteristics of minerals and rocks sampled in the study area, and the feature extraction extraction of histogram normalized images for Landsat TM and Airborne Radiometric data, and finally evaluation of applicability of some useful pattern recognition techniques for regional lithological mapping. As a result, reflectances of non-metallic minerals are much higher than rock samples in the area. However, low grade dickites are slightly higher than rock samples, probably due to their greyish colour and also their textural features which may scatter the reflectance and may be capable of capturing much hychoryl ions. The reflectances of rock samples may depend on the degree of whiteness of samples. The outcrops or mine dumps in the study area were most effectively extracted on the histogram normalized image of TM Band 1, 2 and 3, due to their high reflectivity. The Masking technique using the above bands may be the most effective and the natural colour composite may provide some success as well. The colour composite image of PCA may also be effective in extracting geological features, and airborne radiometric data may be useful to some degree as an complementary tool.

Interpretation of Airborne Magnetic and Radioactive Data for the Uranium Deposit in Geumsan Area (금산 함우라늄광상 분포지역의 항공자력/방사능 탐사자료 해석)

  • Shin, Eun-Ju;Ko, Kwangbeom;An, Dongkuk;Han, Kyeongsoo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • We conducted the airborne magnetic and radiometric survey for the characterization of the black shale related and pyrometamorphic uranium deposits distributed in Geumsan area. For the successful characterization of the uranium deposits, the general geological and structural geological features were investigated based on the lithological and linear feature analysis to individual magnetic and radiometric data as the first step. Lithological analysis from the magnetic reduction to the pole and downward continuation map revealed that prominent positive anomalies caused by black and dark gray slate member were clearly recognized as magnetic sources. These results indicate that magnetic survey, even though it is not a direct method for the detection of uranium, can be a useful tool in uranium detection. By the linear feature analysis based on 2nd vertical derivative and curvature map, two linearments corresponded the gray hornfels and black slate member were extracted and in succession, the additional uranium potential zone was inferred. Final discrimination whether uranium-rich or not was confirmed by radiometric and uranium anomaly map. From these analysis, we finally concluded that uranium deposit originated by pyrometamorphic process was confined near the intrusive area only. On the contrary, it was found that black shale related uranium deposit is distributed and extended through out the entire survey area with south-west to north-east direction. In addition, from the linear feature analysis based on radiometric total anomaly map, the typical discontinuous characteristics were recognized in areas where uranium-contained linearments cross the faults. From the above discussion, we concluded that airborne magnetic and radiometric survey are complementary to each other. So it is preferable to carry out simultaneously for the efficient data processing and fruitful interpretation.

A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas (변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구)

  • Yeon, Jong-Min;Kim, Hyun-Ok;Yoon, Bo-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.66-80
    • /
    • 2012
  • It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.

Vicarious Calibration-based Robust Spectrum Measurement for Spectral Libraries Using a Hyperspectral Imaging System

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.649-659
    • /
    • 2018
  • The aim of this study is to develop a protocol for obtaining spectral signals that are robust to varying lighting conditions, which are often found in the Polar regions, for creating a spectral library specific to those regions. Because hyperspectral image (HSI)-derived spectra are collected on the same scale as images, they can be directly associated with image data. However, it is challenging to find precise and robust spectra that can be used for a spectral library from images taken under different lighting conditions. Hence, this study proposes a new radiometric calibration protocol that incorporates radiometric targets with a traditional vicarious calibration approach to solve issues in image-based spectrum measurements. HSIs obtained by the proposed method under different illumination levels are visually uniform and do not include any artifacts such as stripes or random noise. The extracted spectra capture spectral characteristics such as reflectance curve shapes and absorption features better than those that have not been calibrated. The results are also validated quantitatively. The calibrated spectra are shown to be very robust to varying lighting conditions and hence are suitable for a spectral library specific to the Polar regions.

Change Detection Comparison of Multitemporal Infrared Satellite Imagery Using Relative Radiometric Normalization (상대 방사 정규화를 이용한 다시기 적외 위성영상의 변화탐지 비교)

  • Han, Dongyeob;Song, Jeongheon;Byun, Younggi
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1179-1185
    • /
    • 2017
  • The KOMPSAT-3A satellite acquires high-resolution MWIR images twice a day compared to conventional Earth observing satellites. New radiometric information of Earth's surface can be provided due to different characteristics from existing SWIR images or TIR images. In this study, the difference image of multitemporal images was generated and compared with existing infrared images to find the characteristics of KOMPSAT-3A MWIR satellite images. A co-registration was performed and the difference between pixel values was minimized by using PIFs (Pseudo Invariant Features) pixel-based relative normalization. The experiment using Sentinel-2 SWIR image, Landsat 8 TIR image, and KOMPSAT-3A MWIR image showed that the distinction between artifacts in the difference image of KOMPSAT-3A is prominent. It is believed that the utilization of KOMPSAT-3A MWIR images can be improved by using the characteristics of IR image.