Relative Radiometric Normalization of Hyperion Hyperspectral Images Through Automatic Extraction of Pseudo-Invariant Features for Change Detection

자동 PIF 추출을 통한 Hyperion 초분광영상의 상대 방사정규화 - 변화탐지를 목적으로

  • 김대성 (서울대학교 건설환경공학부) ;
  • 김용일 (서울대학교 건설환경공학부)
  • Published : 2008.04.30

Abstract

This study focuses on the radiometric normalization, which is one of the pre-processing steps to apply the change detection technique fur hyperspectral images. The PIFs which had radiometric consistency under the time interval were automatically extracted by applying spectral angle, and used as sample pixels for linear regression of the radiometric normalization. We also dealt with the problem about the number of PIFs for linear regression with iteratively quantitative methods. The results were assessed in comparison with image regression, histogram matching, and FLAASH. In conclusion, we show that linear regression method with PIFs can carry out the efficient result for radiometric normalization.

지상의 정보를 주기적으로 취득하는 위성영상은 여러 가지 원인으로 인해 동일 지점에 대해 일정한 화소값을 기대하기 어렵고, 이런 영상은 변화탐지 결과에 영향을 미칠 가능성이 높으므로 방사보정을 통해 화소값 차이를 최소화시킬 필요가 있다. 본 연구는 변화탐지를 위한 전처리 과정 중 하나인 방사정규화에 초점을 맞추고 있다. 이를 위해 시간적 불변특성을 보이는 화소인 PIF를 추출하고, 선형회귀 기법을 이용하여 상대 방사정규화를 수행하였다. 화소간 유사도 측정 기법인 분광각을 통해 PIF를 자동으로 추출함으로써, 초분광영상이 가지는 많은 밴드의 장점을 활용하였다 또한 반복적인 정량 평가를 통해 적절한 PIF 개수를 결정하는 연구도 함께 수행하였다. 영상회귀, 히스토그램 매칭, FLAASH 기법을 적용한 방사보정 결과와 비교하여 제안된 알고리즘의 성능을 평가하였으며, PIF 추출을 통한 선형회귀 기법이 변화탐지를 위한 방사보정에 보다 효과적으로 적용될 수 있음을 확인하였다.

Keywords

References

  1. 김대성, 김용일, 어양담 (2007), 변화탐지를 위한 Hyperion 초분광 영상의 자동 기하보정과 밴드선택에 관한 연구, 한국측량학회지, 한국측량학회, 제25권, 제5호, pp. 383-392
  2. Barry, P. (2001), EO-1/Hyperion Science Data User's Guide. TRW Space, Defense and Information Systems
  3. Canty, M. J., Nielsen, A. A., and Schmidt, M. (2004), Automatic Radiometric Normalization of Multitemporal Satellite Imagery, Remote Sensing of Environment, ISRSE, Vol. 91, pp. 441-451 https://doi.org/10.1016/j.rse.2003.10.024
  4. Chen, X., Vierling, L., and Deering, D. (2005), A Simple and Effective Radiometric Correction Method to Improve Landscape Change Detection Across Sensors and Across Time, Remote Sensing of Environment, ISRSE, Vol. 98, pp. 63-79 https://doi.org/10.1016/j.rse.2005.05.021
  5. Datt, B., McVicar, T. R., Niel, T. G. V., Jupp, D. L. B., and Pearlman, J. S. (2003), Preprocessing EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes, IEEE Transactions on Geoscience and Remote Sensing, IEEE, Vol. 41, No. 6, pp. 1246-1259 https://doi.org/10.1109/TGRS.2003.813206
  6. Du, Y., Cihlar, J., Beaubien, J., and Latifovic, R. (2001), Radiometric Noamalization, Compositing, and Quality Control for Satellite High Resolution Image Mosaics over Large Areas, IEEE Transactions on Geoscience and Remote Sensing, IEEE, Vol. 39, No. 3, pp. 623-634 https://doi.org/10.1109/36.911119
  7. Du, Y., Teillet, P. M., and Cihlar, J. (2002), Radiometric Normalization of Multitemporal High-resolution Satellite Images with Quality Control for Land Cover Change Detection, Remote Sensing of Environment, ISRSE, Vol. 82, pp. 123-134 https://doi.org/10.1016/S0034-4257(02)00029-9
  8. EO-1 Homepage, http://eo1.usgs.gov/imagePreviews.php
  9. Frank, M., and Canty, M. (2003), Unsupervised Change Detection for Hyperspectral Images, JPL Publication, 8th publication
  10. Heo, J. and FitzHugh, T. W. (2000), A Standardized Radiometric Normalization Method for Change Detection Using Remotely Sensed Imagery, Photogrammetric Engineering & Remote Sensing, ASPRS, Vol. 66, No. 2, pp. 173-181
  11. Janzen, D. T., Fredeen, A. L., and Wheate, R. D. (2006), Radiometric Correction Techniques and Accuracy Assessment for Landsat TM Data in Remote Forested Regions, Canadian Journal of Remote Sensing, Vol. 32, No. 5, pp. 330-340 https://doi.org/10.5589/m06-028
  12. Jensen, J. R. (2005), Introductory Digital Image Processing - A Remote Sensing Perspective, 3rd Edition, Prentice Hall, NY, USA, pp. 467-494
  13. Lowe, D. G. (2004), Distinctive Image Features from Scaleinvariant Keypoints, International Journal on Computer Vision, IJCV, Vol. 60, No. 2, pp. 91-110 https://doi.org/10.1023/B:VISI.0000029664.99615.94
  14. Olthof, I., Pouliot, D., Fernandes, R., and Latifovic, R. (2005), Landsat-7 ETM+ Radiometric Normalization Comparison for Northern Mapping Application, Remote Sensing of Environment, ISRSE, Vol. 95, pp. 388-398 https://doi.org/10.1016/j.rse.2004.06.024
  15. Schott, J. R., Salvaggio, C., and Volchok, W. J. (1988), Radiometric Scene Normalization Using Pseudoinvariant Features, Remote Sensing of Environment, ISRSE, Vol. 26, pp. 1-16 https://doi.org/10.1016/0034-4257(88)90116-2
  16. Singh, A. (1989), Digital Change Detection Techniques Using Remotely Sensed Data, International Journal of Remote Sensing, IJRS, Vol. 10, pp. 989-1003 https://doi.org/10.1080/01431168908903939
  17. Sohn, Y., Rebello, N. S. (2002), Supervised and Unsupervised Spectral Angle Classifiers, Photogrammetric Engineering & Remote Sensing, ASPRS, Vol. 68, No. 12, pp. 1271-1280
  18. Yang, X., and Lo, C. P. (2000), Relative Radiometric Normalization Performance for Change Detection from Multi-Date Satellite Images, Photogrammetric Engineering & Remote Sensing, ASPRS, Vol. 66, No. 8, pp. 967-980
  19. Yoon, Y., and Kim, Y. (2007), Application of Hyperion Hyperspectral Remote Sensing Data for Wildfire Fuel Mapping, Korean Journal of Remote Sensing, KSRS, Vol. 23, No. 1, pp. 21-32 https://doi.org/10.7780/kjrs.2007.23.1.21