• Title/Summary/Keyword: radioisotopes

Search Result 195, Processing Time 0.024 seconds

Performance Evaluation of Gamma ray Shielding of Antimony Shielding Sheet (안티몬 차폐시트의 감마선 차폐 성능평가)

  • Han, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.135-140
    • /
    • 2018
  • In this study, the dose of antimony shielding sheet was measured and the shielding rates according to the distance between the radioisotopes and the detector was analyzed according to the type of $^{99m}Tc$, $^{18}F$, $^{201}Tl$, $^{131}I$, $^{123}I$ using the antimony shielding sheet. The detector was used with an inspector. Six sheets of 0.25 mmPb were prepared with 20 cm width and length. Measurement results using $^{99m}Tc$, $^{201}Tl$, and $^{123}I$ showed that as the thickness of the sheet became thicker, the farther the distance from the source to the sheet was, the smaller the transmitted dose amount was measured. It was analyzed that a thickness of 1.50 mm or more was required to obtain a shielding rates of 90% or more. In the experiments of $^{18}F$ and $^{131}I$, the dose value was highest when 0.25 mm sheet was used, and the shielding rates was negative, unlike the results of other radioisotopes. Since $^{201}Tl$ are used when using antimony sheet and $^{18}F$ and $^{131}I$ have no shielding effect, it is thought that it is effective to reduce dose by repeating training and simulation training so that work can be done in a short time.

Antibacterial Activity Evaluation of Radioisotope Lu-177 with a Modified Tube on Plate Core (중심부에 주입구가 존재하는 플레이트를 통한 방사성동위원소의 항균능력 측정)

  • Joh, Eun-Ha
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.469-471
    • /
    • 2013
  • In this study, we measured the anti-bacterial activity of radioisotope Lu-177 using a new laboratory instrument. The disk method used for the measurement of existing anti-bacterial antibiotics is drug diffusion into the medium. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading and the present invention was thus tested. In the medium, a space isolated separately for radioisotope injection was used to prevent the radioisotope from spreading and radioisotopes are actually injected by this system. We found that the antibacterial activity increased according to the radiation dose increases. It is expected that, through the present study, measuring the antibacterial activity of the other radioisotopes easily in the laboratory will be possible.

A Study on the Affinity of Some Medicinal Herbs to Two Cytochrome P450 Subfamilies, CYP3A4 and CYP2D6 (한약재의 Cytochrome P450 결합관련 안전성에 관한 연구)

  • Yoo, Da-Young;Woo, Hong-Jung;Kim, Young-Chul
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.375-383
    • /
    • 2013
  • Objectives : This study was performed to investigate the metabolic site of some medicinal herbs in the liver associated with CYP (Cytochrome P450). Methods : Cytochrome P450 is the major enzymes involved in drug metabolism and bioactivation. CYP3A4 and CYP2D6, the major CYP isoforms in humans, catalyse the major proportion of drugs available on the market. Scintillation proximity assay (SPA) is often used in studies to identify compounds that inhibit CYP3A4 and CYP2D6. 28 herbal extracts and radioisotopes were attached competitively to SPA beads, and followed by measuring the remaining radioisotopes in the medium. Erythromycin and dexamethasone, inhibitors of CYP3A4 and CYP2D6, were used as controls respectively. Results : Most of the 28 herbal extracts showed dose-dependent affinity to the CYP3A4 while some of the herbs showed affinity to the CYP2D6. Conclusions : These results suggest that most of the 28 herbal extracts are metabolized safely in the liver, combined with CYP3A4 and CYP2D6.

Monitoring of Rotational Movements of Two Piston Rings in a Cylinder Using Radioisotopes

  • Jung, Sunghee;Jin, Joonha
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.423-431
    • /
    • 1999
  • A radiotracer technique has been developed to monitor the rotational movement of two piston rings in one cylinder during engine operation. The rings were labeled with two different kinds of radioisotopes, i.e. $^{60}$ Co and $^{192}$ Ir, for identification of the top ring from the second ring. The radiotracers were implanted in a small hole bored on the inner side of each piston ring. The rings were installed in a single cylinder hydrogen engine and three Nal scintillation detectors were mounted around the engine block to measure the gamma radiation. The angle of ring-gap orientation was determined from the radiation counts measured with the three detectors during engine operation. Two windows (upper window for $^{60}$ Co and lower window for $^{192}$ Ir) were set on each ratemeter to count radiation from the two isotopes separately. Procedure to convert the radiation counts to the position of the ring gap was established. With the software programmed with MS-Visualbasic, radiation counts were compared with the reference responses that were measured at angular intervals of 10$^{\circ}$for each piston ring in advance of the experiment. The result was used for the evaluation of the relationship between the orientation of ring-gaps and oil consumption. It was found that an increase in the oil consumption rate of a specific operation condition was closely related to the relative phase angle of the two piston rings.

  • PDF

A STUDY ON METHODOLOGY FOR IDENTIFYING CORRELATIONS BETWEEN LERF AND EARLY FATALITY

  • Kang, Kyungmin;Jae, Moosung;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.745-754
    • /
    • 2012
  • The correlations between Large Early Release Frequency (LERF) and Early Fatality need to be investigated for risk-informed application and regulation. In Regulatory Guide (RG) -1.174, while there are decision-making criteria using the measures of Core Damage Frequency (CDF) and LERF, there are no specific criteria on LERF. Since there are both huge uncertainties and large costs needed in off-site consequence calculation, a LERF assessment methodology needs to be developed, and its correlation factor needs to be identified, for risk-informed decision-making. A new method for estimating off-site consequence has been presented and performed for assessing health effects caused by radioisotopes released from severe accidents of nuclear power plants in this study. The MACCS2 code is used for validating the source term quantitatively regarding health effects, depending on the release characteristics of radioisotopes during severe accidents. This study developed a method for identifying correlations between LERF and Early Fatality and validates the results of the model using the MACCS2 code. The results of this study may contribute to defining LERF and finding a measure for risk-informed regulations and risk-informed decision-making.

Analysis of Radiation Dose on Single Cells Using Therapeutic Radioisotopes Using the Monte Carlo Method (몬테카를로 방법을 이용한 치료용 방사성동위원소 사용 시 단일 세포에 대한 선량 분석)

  • Kim, Jung-Hoon;Kim, Yu-Soo
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.433-438
    • /
    • 2022
  • Targeted radionuclides treatment (TRT) requires the establishment of treatment plans that consider various factors, such as the type of radionuclides, target organs, and administration methods. For this reason, in this study, the absorption dose of a single cell was analyzed according to the type of radioisotope used to treat target radionuclides. In this study, a simulation was performed on beta rays used in the treatment of target radionuclides at the cell level using MCNPX (ver. 2.5.0). First, according to the calculation formula, the beam path according to the type of radioisotope for treatment was calculated. Second, the amount of self-radiation by beta rays emitted from cell diameters of 5 ㎛ and 10 ㎛ cell nuclei was evaluated. As a result, it showed a high range proportional to the maximum energy of the beta-ray, and the highest self-dose distribution from 177 Lu radiation sources among therapeutic radioisotopes. This was analyzed as a result that is inversely proportional to the maximum energy of the beta-ray, and it suggests that the selection of a nuclide considering the range of the beta-ray is necessary in the treatment of target radionuclides in the future.

Challenges of implementing the policy and strategy for management of radioactive waste and nuclear spent fuel in Indonesia

  • Wisnubroto, D.S.;Zamroni, H.;Sumarbagiono, R.;Nurliati, G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.549-561
    • /
    • 2021
  • Indonesia has policies and strategies for the management of radioactive waste and spent nuclear fuel that arises from the use of nuclear research and development facilities, including three research reactors, and the use of radioisotopes in medicine and industries. The Indonesian government has provided extensive facilities such as an independent regulatory organization (BAPETEN) and a centralized radioactive waste management organization (CRWT-BATAN). Further, the presence of regulations and several international conventions guarantee the protection of the public from all risks due to handling radioactive waste and spent nuclear fuel. However, the sustainability of radioactive waste management in the future faces various challenges, such as disposal issues related to not only to site selection but also financing of radioactive waste management. Likewise, the problem of transportation persists; as an archipelago country, Indonesia still struggles to manage the infrastructure required for the transport of radioactive materials. The waste from the production of the radioisotopes, especially from the production of 99Mo, requires special attention because BATAN has never handled it. Indonesia should also resolve the management of NORM from various activities. In Indonesia, the definition of radioactive waste does not include NORM. Therefore, the management of this waste needs revision and improvement on the regulations, infrastructure, and technology.

Remote handling systems for the ISAC and ARIEL high-power fission and spallation ISOL target facilities at TRIUMF

  • Minor, Grant;Kapalka, Jason;Fisher, Chad;Paley, William;Chen, Kevin;Kinakin, Maxim;Earle, Isaac;Moss, Bevan;Bricault, Pierre;Gottberg, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1378-1389
    • /
    • 2021
  • TRIUMF, Canada's particle accelerator centre, is constructing a new high-power ISOL (Isotope Separation On-Line) facility called ARIEL (Advanced Rare IsotopE Laboratory). Thick porous targets will be bombarded with up to 48 kW of 480 MeV protons from TRIUMF's cyclotron, or up to 100 kW of 30 MeV electrons from a new e-linac, to produce short-lived radioisotopes for a variety of applications, including nuclear astrophysics, fundamental nuclear structure and nuclear medicine. For efficient release of radioisotopes, the targets are heated to temperatures approaching 2000 ℃, and are exposed to GSv/h level radiation fields resulting from intended fissions and spallations. Due to these conditions, the operational life for each target is only about five weeks, calling for frequent remote target exchanges to limit downtime. A few days after irradiation, the targets have a residual radiation field producing a dose rate on the order of 10 Sv/h at 1 m, requiring several years of decay prior to shipment to a national disposal facility. TRIUMF is installing new remote handling infrastructure dedicated to ARIEL, including hot cells and a remote handling crane. The system design applies learnings from multiple existing facilities, including CERN-ISOLDE, GANIL-SPIRAL II as well as TRIUMF's ISAC (Isotope Separator and ACcelerator).

Study on (n,p) reactions of 58Ni, 99Tc, 99Ru, 131Xe, 133Cs and 186Os radioisotopes used in medicine

  • Hallo M. Abdullah;Ali H. Ahmed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.304-309
    • /
    • 2023
  • In the last decade, nuclear medicine appears to be a good choice of medicine. 58Co, 99Mo, 99Tc, 99Re, 133Xe and 186Re are very important radionuclides for nuclear medicine. In this study, the excitation functions of 58Ni (n, p) 58Co, 99Tc (n, p) 99Mo, 99Ru (n, p) 99Tc, 131Xe (n, p) 131I, 133Cs (n, p) 133Xe and 186Os (n, p) 186Re nuclear reactions were calculated at neutron energies between 1 and 20 MeV using TALYS 1.95 and EMPIRE 3.2 nuclear codes. Furthermore, the cross sections were calculated with the empirical formula derived in our past study at 14-15 MeV. The obtained results were compared with the measured values in EXFOR library, and with the evaluated data of (JENDL-4.0/HE, JEFF-3.3, TENDL-2019, ENDF/B-VIII.0, IRDFF-II, JENDL/ImPACT-18). The results are in good agreement with those of the evaluated data libraries and experimental results and indicates that these radioisotopes can be produced by smaller cyclotrons.

Assessment of neutron-induced activation of irradiated samples in a research reactor

  • Ildiko Harsanyi;Andras Horvath;Zoltan Kis;Katalin Gmeling;Daria Jozwiak-Niedzwiedzka;Michal A. Glinicki;Laszlo Szentmiklosi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1036-1044
    • /
    • 2023
  • The combination of MCNP6 and the FISPACT codes was used to predict inventories of radioisotopes produced by neutron exposure of a sample in a research reactor. The detailed MCNP6 model of the Budapest Research Reactor and the specific irradiation geometry of the NAA channel was established, while realistic material cards were specified based on concentrations measured by PGAA and NAA, considering the precursor elements of all significant radioisotopes. The energy- and spatial distributions of the neutron field calculated by MCNP6 were transferred to FISPACT, and the resulting activities were validated against those measured using neutron-irradiated small and bulky targets. This approach is general enough to handle different target materials, shapes, and irradiation conditions. A general agreement within 10% has been achieved. Moreover, the method can also be made applicable to predict the activation properties of the near-vessel concrete of existing nuclear installations or assist in the optimal construction of new nuclear power plant units.