DOI QR코드

DOI QR Code

Antibacterial Activity Evaluation of Radioisotope Lu-177 with a Modified Tube on Plate Core

중심부에 주입구가 존재하는 플레이트를 통한 방사성동위원소의 항균능력 측정

  • Joh, Eun-Ha (Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute)
  • 조은하 (한국원자력연구원 동위원소이용기술개발부)
  • Received : 2013.11.13
  • Accepted : 2013.12.05
  • Published : 2013.12.28

Abstract

In this study, we measured the anti-bacterial activity of radioisotope Lu-177 using a new laboratory instrument. The disk method used for the measurement of existing anti-bacterial antibiotics is drug diffusion into the medium. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading and the present invention was thus tested. In the medium, a space isolated separately for radioisotope injection was used to prevent the radioisotope from spreading and radioisotopes are actually injected by this system. We found that the antibacterial activity increased according to the radiation dose increases. It is expected that, through the present study, measuring the antibacterial activity of the other radioisotopes easily in the laboratory will be possible.

본 연구를 통하여 우리는 새로운 실험기구를 사용하여 방사성동위원소(Lu-177)의 항균능력을 측정하였다. 기존에 약물의 항균능력을 측정하는데 사용되었던 디스크법은 배지로의 약물 확산에 의해서 항균능력을 측정하는 방법이기 때문에 방사성동위원소에 적용하기는 적합하지 않아 새로운 실험 방법이 요구된다. 방사성동위원소의 항균능력을 측정하기 위해서는 배지로의 약물 확산을 막고 한점에 머무르게 하는 방법이 필요하다. 본 연구에서 우리는 새로운 실험도구를 이용하여 Lu-177의 방사능량이 증가할수록 항균능력이 증가함을 확인하였다. 본 연구에서 사용된 실험방법을 통해 다른 방사성동위원소의 항균능력도 쉽게 측정할 수 있을 것으로 기대된다.

Keywords

References

  1. Abedi D, Feizizadeh S, Akbari V, Jafarian-Dehkordi A. 2013. In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli. Res. Pharm. Sci. 8: 260-268.
  2. Bryan RA, Guimaraes AJ, Hopcraft S, Jiang Z, Bonilla K, Morgenstern A, et al. 2012. Toward developing a universal treatment for fungal disease using radioimmunotherapy targeting common fungal antigens. Mycopathologia. 173: 463-471. https://doi.org/10.1007/s11046-011-9476-9
  3. De Guzman ZM, Cervancia CR, Dimasuay KG, Tolentino MM, Abrera GB, Cobar ML, et al. 2011. Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays. Appl. Radiat. Isot. 69: 1374-1379. https://doi.org/10.1016/j.apradiso.2011.05.032
  4. Huclier-Markai S, Alliot C, Varmenot N, Cutler CS, Barbet J. 2012. Alpha-emitters for immuno-therapy: a review of recent developments from chemistry to clinics. Curr. Top. Med. Chem. 12: 2642-2654.
  5. Hueting R, Tavare R, Dilworth JR, Mullen GE. 2013. Copper-64 radiolabelling of the C2A domain of synaptotagmin I using a functionalised bis(thiosemicarbazone): A pre- and postlabelling comparison. J. Inorg. Biochem. 128: 108-111. https://doi.org/10.1016/j.jinorgbio.2013.07.017
  6. Jeon YH, Lee HW, Lee YL, Kim JE, Hwang MH, Jeong SY, et al. 2011. Combined E7-dendritic cell-based immunotherapy and human sodium/iodide symporter radioiodine gene therapy with monitoring of antitumor effects by bioluminescent imaging in a mouse model of uterine cervical cancer. Cancer. Biother. Radiopharm. 26: 671-679. https://doi.org/10.1089/cbr.2011.1081
  7. Kang CS, Sun X, Jia F, Song HA, Chen Y, Lewis M, et al. 2012. Synthesis and preclinical evaluation of bifunctional ligands for improved chelation chemistry of 90Y and 177Lu for targeted radioimmunotherapy. Bioconjug. Chem. 23: 1775-1782. https://doi.org/10.1021/bc200696b
  8. Otani Y, Yamada T, Kato S, Shikama N, Funakoshi K, Kuroda I, et al. 2013. Source strength assay of iodine-125 seeds sealed within sterile packaging. J. Appl. Clin. Med. Phys. 14: 4082.
  9. Somily AM. 2010. Comparison of E-test and disc diffusion methods for the in vitro evaluation of the antimicrobial activity of colistin in multi-drug resistant Gram-negative Bacilli. Saudi. Med. J. 31: 507-511.
  10. Towers S. 2013. Improving the control of systematic uncertainties in precision measurements of radionuclide half-life. Appl. Radiat. Isot. 77: 110-114. https://doi.org/10.1016/j.apradiso.2013.03.003
  11. Ujjani C, Cheson BD. 2013. The current status and future impact of targeted therapies in non-Hodgkin lymphoma. Expert. Rev. Hematol. 6: 191-202. https://doi.org/10.1586/ehm.13.6
  12. Vera DR, Eigner S, Henke KE, Lebeda O, Melichar F, Beran M. 2012. Preparation and preclinical evaluation of $^{177}Lu$-nimotuzumab targeting epidermal growth factor receptor overexpressing tumors. Nucl. Med. Biol. 39: 3-13. https://doi.org/10.1016/j.nucmedbio.2011.07.001
  13. Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW. 2013. Sensitization of tumor to $^{212}Pb$ radioimmunotherapy by gemcitabine involves initial abrogation of G2 arrest and blocked DNA damage repair by interference with Rad51. Int. J. Radiat. Oncol. Biol. Phys. 85: 1119-1126. https://doi.org/10.1016/j.ijrobp.2012.09.015