• Title/Summary/Keyword: radioisotopes

Search Result 195, Processing Time 0.024 seconds

Research status for long term half-life PET radioisotopes in KIRAMS

  • Kim, Jung Young;Park, Hyun;Chun, Kwon Soo;An, Gwang Il
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • It is essential use of long term half life radioisotopes for positron emission tomography (PET) imaging study of biopharmaceuticals because most of biopharmaceuticals have long biological half-life. Some representative isotopes are $^{124}I$, $^{64}Cu$, $^{89}Zr$ and so on. These PET radioisotopes and their radiopharmaceuticals have recently received growing interest because of long half life and good imaging properties. Furthermore, $^{64}Cu$ and $^{89}Zr$ can be used in a number of radiopharmaceuticals due to its ease of conjugation to peptides and antibodies using the proper chelator. In recent years, since $^{124}I$ was first developed in 2005, we have been studied to develop an efficient method and procedure for producing these radioisotopes, and we have made considerable progress in production of long term half life radioisotopes. This review introduces the general production system, purification procedure, and several advances on targeting method for $^{124}I$ and $^{64}Cu$ in KIRAMS.

Analysis of the Latest Trends of Radioisotope Using in RI-Biomics Fields (RI-Biomics분야 RI의 최신 동향 분석)

  • Jang, Sol-Ah;Yeom, Yu-Sun;Park, Tai-Jin;Hwang, Young Muk;Youn, Dol-Mi
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.221-224
    • /
    • 2013
  • RI-Biomics is a new compound word of radiation technology and Biomics related to the study of life. RI-Biomics is high radiation fusion technology by combining evaluation of pharmacokinetics in vivo (RI-ADME) of new drugs and medical materials using radioisotope and molecular imaging technology using nuclear medicine equipments. RI-Biomics fields are emerging with the increasing usage of radioisotopes (RI). In this paper, we investigated the latest trends of radioisotope using in RI-Biomics fields. The representative radioisotopes are $^{14}C$, $^3H$ and $^{32}P$ for the optimization and the selection of candidates in the development process of new drugs among the RI-Biomics fields. As shown in the status of accumulated income of radioisotopes, using amounts of radioisotopes are showing a tendency to increase every year. $^{14}C$ is 61.6% increase of accumulated income growth rate and $^3H$ increased by 58.8% and $^{32}P$ increased by 33.9% in 2012 compared to 2007. These isotopes are used in a variety of fields as using of $^{14}C$ for microdosing test, development of [$^3H$]cholesterol absorption inhibitors, study of [$^{131}I$]pyronaridine tetraphosphate for malaria therapy. These are going on in vivo test sucessfully. So, clinical research step is expected to begin soon. Therefore, usages of radioisotopes are necessary and need for the evaluation of pharmacokinetics, optimization and the selection of new drug candidates in the development process of new drugs among the RI-Biomics fields. So, using of radioisotopes is predict to increase continuously except for primarily used $^{14}C$, $^3H$.

Brachytherapy: A Comprehensive Review

  • Lim, Young Kyung;Kim, Dohyeon
    • Progress in Medical Physics
    • /
    • v.32 no.2
    • /
    • pp.25-39
    • /
    • 2021
  • Brachytherapy, along with external beam radiation therapy (EBRT), is an essential and effective radiation treatment process. In brachytherapy, in contrast to EBRT, the radiation source is radioisotopes. Because these isotopes can be positioned inside or near the tumor, it is possible to protect other organs around the tumor while delivering an extremely high-dose of treatment to the tumor. Brachytherapy has a long history of more than 100 years. In the early 1900s, the radioisotopes used for brachytherapy were only radium or radon isotopes extracted from nature. Over time, however, various radioisotopes have been artificially produced. As radioisotopes have high radioactivity and miniature size, the application of brachytherapy has expanded to high-dose-rate brachytherapy. Recently, advanced treatment techniques used in EBRT, such as image guidance and intensity modulation techniques, have been applied to brachytherapy. Three-dimensional images, such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography are used for accurate delineation of treatment targets and normal organs. Intensity-modulated brachytherapy is anticipated to be performed in the near future, and it is anticipated that the treatment outcomes of applicable cancers will be greatly improved by this treatment's excellent dose delivery characteristics.

Analysis of Status of Radiation/Radioisotopes Utilization

  • Park, Chan Hee;Lee, Seung Hyun;Kim, Na Kyung;Kim, Kon Wuk
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Background: The use of radiation and radioisotopes in Korea has been increasing each year, and its impact on economy and industry is expected to be increasing progressively following the development of industrial technology and the expansion of their usage. To establish and supporting policies for industries using radiation and radioisotopes, it is necessary to check the status of related industries accurately, as well as to gather data required to establish plans for industrial development by studying both revenues and economic scale (contributing to revenue). Materials and Methods: To analyze the status of utilization, surveys were carried out on 6,621 organizations engaged in nuclear operations handling radiation and radioisotopes pursuant to the Nuclear Safety Act as of end 2014, on 33,471 medical institutions using radiation generators for medical and diagnostic purposes pursuant to the Medical Service Act, and on 2,218 organizations using radiation generators for animal diagnostics pursuant to the Veterinary License Act. Results and discussion: The overall status of the domestic radiation market including the number of user organizations, that of employees, and the size of distributions (imports, productions, and exports) with which the scale of domestic radiation market can be judged showed a growth trend compared to the previous year, though the number of employees for radiation operation in industrial sector, research sector, education sector, military sector, and power plants (nuclear power plants) and the size of imports was reduced somewhat. Conclusion: It is expected that data acquired through periodic surveys on the status of utilization would be utilized practically in establishing governmental policies related to the promotion of usage of radiation and radioisotopes, and also be utilized widely in cultivating and developing the industry efficiently to invigorate the related industries.

Validation of the production quality and therapeutic efficacy of 47Sc through its anti-cancer effects against EGFR-targeted non-small cell lung cancer

  • Da-Mi Kim;So-Young Lee;Jae-Cheong Lim;Eun-Ha Cho;Ul-Jae Park
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.9-15
    • /
    • 2022
  • Anti-cancer and therapeutic effects using therapeutic radioisotopes have been demonstrated by various studies, and it is well-known that therapeutic radioisotopes are useful in cancer treatment. Recently, one of the therapeutic radioisotopes, scandium is emerging as a radioisotope applicable to PET imaging (43Sc, 44Sc) and therapy (47Sc) in cancer theranostic approach. However, 47Sc has little known radiobiological and therapeutic efficacy compared to other therapeutic radioisotopes. Here, we investigated the quality and therapeutic efficacy of 47Sc radioisotope produced by our production/isolation technology at the research reactor 'HANARO' in KAERI (Korea Atomic Energy Research Institute). We showed that the therapeutic efficacy of 47Sc, produced by our production/isolation technology, effectively suppressed epidermal growth factor receptor (EGFR)-targeted non-small cell lung cancer (NSCLC) cells. Consequently, these results suggest that the high quality of the produced 47Sc by our production/isolation technology enables the development of therapeutic strategies for cancer treatment and radiopharmaceuticals using 47Sc.

A Study on Control Status of Radioactive Waste Products in Medical Institution (의료용(醫療用) 방사성폐기물(放射性廢棄物)의 관리현황(管理現況))

  • Kim, Chang-Kyun;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.18 no.1
    • /
    • pp.81-90
    • /
    • 1995
  • This study was conducted to find out the management status of radioisotopes and radioactive waste products in Korean medical institutions during the period of three years from 1991 to 1993. The results are summarized as follows : 1. The rate of medical institution to the institutions making use of radioisotopes was decreased every year, for example, 18.11 % in the year 1991, 17.86 % in the year 1992 and 15.87 % in the year 1993. 2. The use of domestic made radioisotopes in the medical institution was increased every year, for instance, 89.68 % in the year 1991, 94.21 % in the year 1992 and 99.79 % in the year 1993. 3. 91.01 % of the half life of isotopes used in the medical Institution were two month below. 4. The rate of radioactive waste products in the medical institution to all radioactive waste products was increased every year, for example, 54.44 % in the year 1991, 75.36 % in 1992 and 78.49 % in the year 1993. 5. The rate of inflammable waste products from medical institution was 76.47 % of all inflammable waste products, and 73.99 % of whole waste products was from the medical Institution.

  • PDF