DOI QR코드

DOI QR Code

Brachytherapy: A Comprehensive Review

  • Received : 2021.04.12
  • Accepted : 2021.05.17
  • Published : 2021.06.30

Abstract

Brachytherapy, along with external beam radiation therapy (EBRT), is an essential and effective radiation treatment process. In brachytherapy, in contrast to EBRT, the radiation source is radioisotopes. Because these isotopes can be positioned inside or near the tumor, it is possible to protect other organs around the tumor while delivering an extremely high-dose of treatment to the tumor. Brachytherapy has a long history of more than 100 years. In the early 1900s, the radioisotopes used for brachytherapy were only radium or radon isotopes extracted from nature. Over time, however, various radioisotopes have been artificially produced. As radioisotopes have high radioactivity and miniature size, the application of brachytherapy has expanded to high-dose-rate brachytherapy. Recently, advanced treatment techniques used in EBRT, such as image guidance and intensity modulation techniques, have been applied to brachytherapy. Three-dimensional images, such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography are used for accurate delineation of treatment targets and normal organs. Intensity-modulated brachytherapy is anticipated to be performed in the near future, and it is anticipated that the treatment outcomes of applicable cancers will be greatly improved by this treatment's excellent dose delivery characteristics.

Keywords

References

  1. Young HH. The use of radium and the punch operation in desperate cases of enlarged prostate. Ann Surg. 1917;65:633-641. https://doi.org/10.1097/00000658-191705000-00017
  2. Flocks RH, Kerr HD, Elkins HB, Culp DA. The treatment of carcinoma of the prostate by interstitial radiation with radioactive gold (Au198); a follow-up report. J Urol. 1954;71:628-633. https://doi.org/10.1016/S0022-5347(17)67835-2
  3. Whitmore WF Jr, Hilaris B, Grabstald H. Retropubic implantation of iodine 125 in the treatment of prostatic cancer. 1972. J Urol. 2002;167(2 Pt 2):981-983; discussion 984. https://doi.org/10.1016/S0022-5347(02)80318-4
  4. Thomadsen BR, Erickson BA, Eifel PJ, Hsu IC, Patel RR, Petereit DG, et al. A review of safety, quality management, and practice guidelines for high-dose-rate brachytherapy: executive summary. Pract Radiat Oncol. 2014;4:65-70. https://doi.org/10.1016/j.prro.2013.12.005
  5. Albano M, Dumas I, Haie-Meder C. [Brachytherapy at the Institut Gustave-Roussy: personalized vaginal mould applicator: technical modification and improvement]. Cancer Radiother. 2008;12:822-826. https://doi.org/10.1016/j.canrad.2008.04.002
  6. Magne N, Chargari C, SanFilippo N, Messai T, Gerbaulet A, Haie-Meder C. Technical aspects and perspectives of the vaginal mold applicator for brachytherapy of gynecologic malignancies. Brachytherapy. 2010;9:274-277.
  7. Haas JS, Dean RD, Mansfield CM. Dosimetric comparison of the Fletcher family of gynecologic colpostats 1950-1980. Int J Radiat Oncol Biol Phys. 1985;11:1317-1321. https://doi.org/10.1016/0360-3016(85)90247-0
  8. Henschke UK. "Afterloading" applicator for radiation therapy of carcinoma of the uterus. Radiology. 1960;74:834. https://doi.org/10.1148/74.5.834
  9. Noyes WR, Peters NE, Thomadsen BR, Fowler JF, Buchler DA, Stitt JA, et al. Impact of "optimized" treatment planning for tandem and ring, and tandem and ovoids, using high dose rate brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 1995;31:79-86. https://doi.org/10.1016/0360-3016(94)00401-6
  10. Petit S, Wielopolski P, Rijnsdorp R, Mens JW, Kolkman-Deurloo IK. MR guided applicator reconstruction for brachytherapy of cervical cancer using the novel titanium Rotterdam applicator. Radiother Oncol. 2013;107:88-92. https://doi.org/10.1016/j.radonc.2013.03.014
  11. Tod MC, Meredith WJ. A dosage system for use in the treatment of cancer of the uterine cervix. Br J Radiology. 1938;11:809-824. https://doi.org/10.1259/0007-1285-11-132-809
  12. ICRU Report 38. Dose and volume specification for reporting intracavitary therapy in gynecology. ICRU Report. Bethesda: ICRU. 1985; 38.
  13. Nomden CN, de Leeuw AA, Moerland MA, Roesink JM, Tersteeg RJ, Jurgenliemk-Schulz IM. Clinical use of the Utrecht applicator for combined intracavitary/interstitial brachytherapy treatment in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2012;82:1424-1430. https://doi.org/10.1016/j.ijrobp.2011.04.044
  14. Kirisits C, Lang S, Dimopoulos J, Berger D, Georg D, Potter R. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys. 2006;65:624-630. https://doi.org/10.1016/j.ijrobp.2006.01.036
  15. Sewchand W, Prempree T, Patanaphan V, Whitley NO, Heidtman B, Scott RM. Value of multi-planar CT images in interactive dosimetry planning of intracavitary therapy. Int J Radiat Oncol Biol Phys. 1982;8:295-301. https://doi.org/10.1016/0360-3016(82)90531-4
  16. Himmelmann A, Bjurstam N, Ragnhult I. Computed tomography measurements of the cervix and distances to the bladder and rectum in intracavitary radiation treatment of gynaecological cancer. Strahlentherapie. 1983;159:198-202.
  17. Hunter RD, Wong F, Moore C, Notley HM, Wilkinson J. Bladder base dosage in patients undergoing intracavitary therapy. Radiother Oncol. 1986;7:189-197. https://doi.org/10.1016/S0167-8140(86)80029-9
  18. Kapp KS, Stuecklschweiger GF, Kapp DS, Hackl AG. Dosimetry of intracavitary placements for uterine and cervical carcinoma: results of orthogonal film, TLD, and CTassisted techniques. Radiother Oncol. 1992;24:137-146. https://doi.org/10.1016/0167-8140(92)90372-2
  19. Ling CC, Schell MC, Working KR, Jentzsch K, Harisiadis L, Carabell S, et al. CT-assisted assessment of bladder and rectum dose in gynecological implants. Int J Radiat Oncol Biol Phys. 1987;13:1577-1582. https://doi.org/10.1016/0360-3016(87)90327-0
  20. Schoeppel SL, LaVigne ML, Martel MK, McShan DL, Fraass BA, Roberts JA. Three-dimensional treatment planning of intracavitary gynecologic implants: analysis of ten cases and implications for dose specification. Int J Radiat Oncol Biol Phys. 1994;28:277-283. https://doi.org/10.1016/0360-3016(94)90168-6
  21. Stuecklschweiger GF, Arian-Schad KS, Poier E, Poschauko J, Hackl A. Bladder and rectal dose of gynecologic high-dose-rate implants: comparison of orthogonal radiographic measurements with in vivo and CT-assisted measurements. Radiology. 1991;181:889-894. https://doi.org/10.1148/radiology.181.3.1947116
  22. Lukka HR, Moore CJ, Hunter RD. The relationship between the bladder and the cervix in patients undergoing intracavitary therapy. Br J Radiol. 1987;60:355-359. https://doi.org/10.1259/0007-1285-60-712-355
  23. Datta NR, Srivastava A, Maria Das KJ, Gupta A, Rastogi N. Comparative assessment of doses to tumor, rectum, and bladder as evaluated by orthogonal radiographs vs. computer enhanced computed tomography-based intracavitary brachytherapy in cervical cancer. Brachytherapy. 2006;5:223-229. https://doi.org/10.1016/j.brachy.2006.09.001
  24. Kang HC, Shin KH, Park SY, Kim JY. 3D CT-based highdose-rate brachytherapy for cervical cancer: clinical impact on late rectal bleeding and local control. Radiother Oncol. 2010;97:507-513.
  25. Charra-Brunaud C, Harter V, Delannes M, Haie-Meder C, Quetin P, Kerr C, et al. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study. Radiother Oncol. 2012;103:305-313. https://doi.org/10.1016/j.radonc.2012.04.007
  26. Pouliot J, Lessard E, Hsu IC: Advanced 3D planning. Brachytherapy Physics. 2nd ed. Seattle: AAPM; 2005:393-414.
  27. Anacak Y, Esassolak M, Aydin A, Aras A, Olacak I, Haydaroglu A. Effect of geometrical optimization on the treatment volumes and the dose homogeneity of biplane interstitial brachytherapy implants. Radiother Oncol. 1997;45:71-76. https://doi.org/10.1016/S0167-8140(97)00143-6
  28. Charra-Brunaud C, Hsu IC, Weinberg V, Pouliot J. Analysis of interaction between number of implant catheters and dose-volume histograms in prostate high- dose-rate brachytherapy using a computer model. Int J Radiat Oncol Biol Phys. 2003;56:586-591. https://doi.org/10.1016/S0360-3016(03)00131-7
  29. Giannouli S, Baltas D, Milickovic N, Lahanas M, Kolotas C, Zamboglou N, et al. Autoactivation of source dwell positions for HDR brachytherapy treatment planning. Med Phys. 2000;27:2517-2520. https://doi.org/10.1118/1.1315315
  30. Pearl J. Heuristics: intelligent search strategies for computer problem solving. Reading: Addison-Wesley; 1984.
  31. Colaco MJ, Dulikravich GS. A survey of basic deterministic, heuristic, and hybrid methods for single-objective optimization and response surface generation. Therm Meas Inverse Tech. 2011;1:355-405.
  32. Kirkpatrick S, Gelatt CD Jr, Vecchi MP. Optimization by simulated annealing. Science. 1983;220:671-680. https://doi.org/10.1126/science.220.4598.671
  33. Lessard E, Pouliot J. Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function. Med Phys. 2001;28:773-779. https://doi.org/10.1118/1.1368127
  34. Lessard E, Hsu IC, Pouliot J. Inverse planning for interstitial gynecologic template brachytherapy: truly anatomy-based planning. Int J Radiat Oncol Biol Phys. 2002;54:1243-1251. https://doi.org/10.1016/S0360-3016(02)03802-6
  35. Milickovic N, Lahanas M, Baltas D, Zamboglou N. Comparison of evolutionary and deterministic multiobjective algorithms for dose optimization in brachytherapy. Paper presented at: International Conference on Evolutionary Multi-Criterion Optimization; 2001 Mar 7-9; Zurich, Switzerland. p. 167-180.
  36. Milickov ic NB, Lahanas M, Papagiannopoulou M, Karouzakis K, Baltas D, Zamboglou, N. Application of multiobjective genetic algorithms in anatomy based dose optimization in brachytherapy and its comparation with deterministic algorithms. Paper presented at: 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2001 Oct 25-28; Istanbul, Turkey. p. 3919-3922.
  37. Winston W: Introduction to linear programming. Operations Research: Applications and Algorithms. Belmont: Wadsworth; 2004:49-126.
  38. Renner WD, O'Connor TP, Bermudez NM. An algorithm for generation of implant plans for high-dose-rate irradiators. Med Phys. 1990;17:35-40. https://doi.org/10.1118/1.596525
  39. Kneschaurek P, Schiessl W, Wehrmann R. Volume-based dose optimization in brachytherapy. Int J Radiat Oncol Biol Phys. 1999;45:811-815. https://doi.org/10.1016/S0360-3016(99)00224-2
  40. Jozsef G, Streeter OE, Astrahan MA. The use of linear programming in optimization of HDR implant dose distributions. Med Phys. 2003;30:751-760. https://doi.org/10.1118/1.1564471
  41. Kolkman-Deurloo IK, Visser AG, Niel CG, Driver N, Levendag PC. Optimization of interstitial volume implants. Radiother Oncol. 1994;31:229-239. https://doi.org/10.1016/0167-8140(94)90428-6
  42. Kestin LL, Jaffray DA, Edmundson GK, Martinez AA, Wong JW, Kini VR, et al. Improving the dosimetric coverage of interstitial high-dose-rate breast implants. Int J Radiat Oncol Biol Phys. 2000;46:35-43. https://doi.org/10.1016/S0360-3016(99)00361-2
  43. Tanderup K, Hellebust TP, Honore HB, Nielsen SK, Olsen DR, Grau C, et al. Dose optimisation in single plane interstitial brachytherapy. Radiother Oncol. 2006;81:105-111. https://doi.org/10.1016/j.radonc.2006.08.021
  44. Kapur A, Potters L. Six sigma tools for a patient safetyoriented, quality-checklist driven radiation medicine department. Pract Radiat Oncol. 2012;2:86-96. https://doi.org/10.1016/j.prro.2011.06.010
  45. Zietman A, Palta J, Steinberg M, Blumberg A, Burns R, Cagle S. Safety is no accident: a framework for quality radiation oncology and care. Arlington: American Society for Radiation Oncology; 2012.
  46. Skowronek J. Current status of brachytherapy in cancer treatment - short overview. J Contemp Brachytherapy. 2017;9:581-589. https://doi.org/10.5114/jcb.2017.72607
  47. Trnkova P, Potter R, Baltas D, Karabis A, Fidarova E, Dimopoulos J, et al. New inverse planning technology for image-guided cervical cancer brachytherapy: description and evaluation within a clinical frame. Radiother Oncol. 2009;93:331-340. https://doi.org/10.1016/j.radonc.2009.10.004
  48. Lee EK, Zaider M. Mixed integer programming approaches to treatment planning for brachytherapy- application to permanent prostate implants. Ann Oper Res. 2003;119:147-163. https://doi.org/10.1023/A:1022986523863
  49. Battermann J. Brachytherapie, een andere vorm van radiotherapie. Ned Tijdschr Geneeskd. 2008;11:12-14.
  50. Perez C, Brady L. Book reviews: Principles and practice of radiation oncology. J Pediatr Hematol/Oncol. 1999;21:560. https://doi.org/10.1097/00043426-199911000-00025
  51. Stewart A, Cormack R, Held K: Radiobiologic concepts for brachytherapy. Brachytherapy: Applications and Techniques. Philadelphia: Lippincott Williams &Wilkins; 2007.
  52. Baltas D, Zamboglou N: 2D and 3D planning in brachytherapy. New Technologies in Radiation Oncology. Berlin: Springer; 2006:237-254.
  53. Thomadsen B: Treatment planning and optimization. High Dose Rate Brachytherapy-A Text Book-. Hoboken: John Wiley & Sons; 1994:79-145.
  54. Callaghan CM, Adams Q, Flynn RT, Wu X, Xu W, Kim Y. Systematic review of intensity-modulated brachytherapy (IMBT): static and dynamic techniques. Int J Radiat Oncol Biol Phys. 2019;105:206-221. https://doi.org/10.1016/j.ijrobp.2019.04.009
  55. Mameghan H, Karolis C, Fisher R, Mameghan J, Billson FA, Donaldson EJ, et al. Iodine-125 irradiation of choroidal melanoma: clinical experience from the Prince of Wales and Sydney Eye Hospitals. Australas Radiol. 1992;36:249-252. https://doi.org/10.1111/j.1440-1673.1992.tb03161.x
  56. Aima M, DeWerd LA, Mitch MG, Hammer CG, Culberson WS. Dosimetric characterization of a new directional lowdose rate brachytherapy source. Med Phys. 2018;45:3848-3860. https://doi.org/10.1002/mp.12994
  57. Watanabe Y, Roy JN, Harrington PJ, Anderson LL. Threedimensional lookup tables for Henschke applicator cervix treatment by HDR 192IR remote afterloading. Int J Radiat Oncol Biol Phys. 1998;41:1201-1207. https://doi.org/10.1016/S0360-3016(98)00170-9
  58. Ouhib Z, Kasper M, Perez Calatayud J, Rodriguez S, Bhatnagar A, Pai S, et al. Aspects of dosimetry and clinical practice of skin brachytherapy: The American Brachytherapy Society working group report. Brachytherapy. 2015;14:840-858. https://doi.org/10.1016/j.brachy.2015.06.005
  59. Arenas M, Arguis M, Diez-Presa L, Henriquez I, MurciaMejia M, Gascon M, et al. Hypofractionated high-doserate plesiotherapy in nonmelanoma skin cancer treatment. Brachytherapy. 2015;14:859-865. https://doi.org/10.1016/j.brachy.2015.09.001
  60. Gauden R, Pracy M, Avery AM, Hodgetts I, Gauden S. HDR brachytherapy for superficial non-melanoma skin cancers. J Med Imaging Radiat Oncol. 2013;57:212-217. https://doi.org/10.1111/j.1754-9485.2012.02466.x
  61. Coquard R, N'Guyen AM, Mathis T, Josserand-Pietri F, Khodri M, Largeron G, et al. Adjuvant contact radiotherapy for conjunctival malignancies: preliminary results of a series of 14 patients treated with the Papillon 50 machine. Cancer Radiother. 2018;22:107-111. https://doi.org/10.1016/j.canrad.2017.08.111
  62. Kim SY, Han EY, Palta JR, Ha SW. Conceptual source design and dosimetric feasibility study for intravascular treatment: a proposal for intensity modulated brachytherapy. J Korean Soc Ther Radiol Oncol. 2003;21:158-166.
  63. Adams QE, Xu J, Breitbach EK, Li X, Enger SA, Rockey WR, et al. Interstitial rotating shield brachytherapy for prostate cancer. Med Phys. 2014;41:051703. https://doi.org/10.1118/1.4870441
  64. Webster MJ, Devic S, Vuong T, Han DY, Scanderbeg D, Choi D, et al. HDR brachytherapy of rectal cancer using a novel grooved-shielding applicator design. Med Phys. 2013;40:091704. https://doi.org/10.1118/1.4816677
  65. Smith PC, Klein M, Hausen JH, Lovoi PA, inventor; Xoft Inc, assignee. Radiation therapy apparatus with selective shielding capability. United States patent US 7,686,755. 2010 Mar 30.
  66. Adams Q, Hopfensperger KM, Kim Y, Wu X, Xu W, Shukla H, et al. Effectiveness of rotating shield brachytherapy for prostate cancer dose escalation and urethral sparing. Int J Radiat Oncol Biol Phys. 2018;102:1543-1550. https://doi.org/10.1016/j.ijrobp.2018.07.2015
  67. Liu Y, Flynn RT, Kim Y, Dadkhah H, Bhatia SK, Buatti JM, et al. Paddle-based rotating-shield brachytherapy. Med Phys. 2015;42:5992-6003. https://doi.org/10.1118/1.4930807
  68. Liu Y, Flynn RT, Kim Y, Wu X. Asymmetric dose-volume optimization with smoothness control for rotating-shield brachytherapy. Med Phys. 2014;41:111709. https://doi.org/10.1118/1.4897617
  69. Cho M, Wu X, Dadkhah H, Yi J, Flynn RT, Kim Y, et al. Fast dose optimization for rotating shield brachytherapy. Med Phys. 2017;44:5384-5392. https://doi.org/10.1002/mp.12486
  70. Tian Z, Zhang M, Hrycushko B, Albuquerque K, Jiang SB, Jia X. Monte Carlo dose calculations for high-doserate brachytherapy using GPU-accelerated processing. Brachytherapy. 2016;15:387-398. https://doi.org/10.1016/j.brachy.2016.01.006
  71. Kim H, Lim YK, Goh Y, Jeong C, Hwang UJ, Choi SH, et al. Plan optimization with L0-norm and group sparsity constraints for a new rotational, intensity-modulated brachytherapy for cervical cancer. PLoS One. 2020;15:e0236585. https://doi.org/10.1371/journal.pone.0236585
  72. Skowronek J. Low-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer - between options. J Contemp Brachytherapy. 2013;5:33-41. https://doi.org/10.5114/jcb.2013.34342
  73. Chin J, Rumble RB, Kollmeier M, Heath E, Efstathiou J, Dorff T, et al. Brachytherapy for patients with prostate cancer: American Society of Clinical Oncology/Cancer Care Ontario joint guideline update. J Clin Oncol. 2017;35:1737-1743. https://doi.org/10.1200/JCO.2016.72.0466
  74. Viswanathan AN, Erickson BA, Ibbott GS, Small W Jr, Eifel PJ. The American College of Radiology and the American Brachytherapy Society practice parameter for the performance of low-dose-rate brachytherapy. Brachytherapy. 2017;16:68-74. https://doi.org/10.1016/j.brachy.2016.06.013
  75. Hsu IC, Yamada Y, Assimos DG, D'Amico AV, Davis BJ, Frank SJ, et al. ACR Appropriateness Criteria high-doserate brachytherapy for prostate cancer. Brachytherapy. 2014;13:27-31. https://doi.org/10.1016/j.brachy.2013.11.007
  76. Erickson BA, Bittner NH, Chadha M, Mourtada F, Demanes DJ. The American College of Radiology and the American Brachytherapy Society practice parameter for the performance of radionuclide-based high-dose-rate brachytherapy. Brachytherapy. 2017;16:75-84. https://doi.org/10.1016/j.brachy.2016.05.006
  77. Grimm P, Billiet I, Bostwick D, Dicker AP, Frank S, Immerzeel J, et al. Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU Int. 2012;109 Suppl 1:22-29.
  78. Yoshioka Y, Suzuki O, Otani Y, Yoshida K, Nose T, Ogawa K. High-dose-rate brachytherapy as monotherapy for prostate cancer: technique, rationale and perspective. J Contemp Brachytherapy. 2014;6:91-98.
  79. Kovacs G, Potter R, Loch T, Hammer J, Kolkman-Deurloo IK, de la Rosette JJ, et al. GEC/ESTRO-EAU recommendations on temporary brachytherapy using stepping sources for localised prostate cancer. Radiother Oncol. 2005;74:137-148. https://doi.org/10.1016/j.radonc.2004.09.004
  80. Rivard MJ, Butler WM, Devlin PM, Hayes JK Jr, Hearn RA, Lief EP, et al. American Brachytherapy Society recommends no change for prostate permanent implant dose prescriptions using iodine-125 or palladium-103. Brachytherapy. 2007;6:34-37.
  81. Yamada Y, Rogers L, Demanes DJ, Morton G, Prestidge BR, Pouliot J, et al. American Brachytherapy Society consensus guidelines for high-dose-rate prostate brachytherapy. Brachytherapy. 2012;11:20-32. https://doi.org/10.1016/j.brachy.2011.09.008
  82. Davis BJ, Horwitz EM, Lee WR, Crook JM, Stock RG, Merrick GS, et al. American Brachytherapy Society consensus guidelines for transrectal ultrasound-guided permanent prostate brachytherapy. Brachytherapy. 2012;11:6-19. https://doi.org/10.1016/j.brachy.2011.07.005
  83. Demanes DJ, Ghilezan MI. High-dose-rate brachytherapy as monotherapy for prostate cancer. Brachytherapy. 2014;13:529-541. https://doi.org/10.1016/j.brachy.2014.03.002
  84. Shah C, Lanni TB Jr, Ghilezan MI, Gustafson GS, Marvin KS, Ye H, et al. Brachytherapy provides comparable outcomes and improved cost-effectiveness in the treatment of low/intermediate prostate cancer. Brachytherapy. 2012;11:441-445. https://doi.org/10.1016/j.brachy.2012.04.002
  85. Mohler J, Armstrong A, Bahnson R, D'Amico A, Davis B, Eastham J, et al. NCCN guidelines on prostate cancer. National Comprehensive Cancer Network; 2016.
  86. Polgar C, Ott OJ, Hildebrandt G, Kauer-Dorner D, Knauerhase H, Major T, et al. Late side-effects and cosmetic results of accelerated partial breast irradiation with interstitial brachytherapy versus whole-breast irradiation after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: 5-year results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18:259-268. https://doi.org/10.1016/S1470-2045(17)30011-6
  87. Strnad V, Ott OJ, Hildebrandt G, Kauer-Dorner D, Knauerhase H, Major T, et al.; Groupe Europeen de Curietherapie of European Society for Radiotherapy and Oncology (GEC-ESTRO). 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and insitu carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. Lancet. 2016;387:229-238. https://doi.org/10.1016/S0140-6736(15)00471-7
  88. Ott OJ, Strnad V, Hildebrandt G, Kauer-Dorner D, Knauerhase H, Major T, et al. GEC-ESTRO multicenter phase 3-trial: accelerated partial breast irradiation with interstitial multicatheter brachytherapy versus external beam whole breast irradiation: early toxicity and patient compliance. Radiother Oncol. 2016;120:119-123. https://doi.org/10.1016/j.radonc.2016.06.019
  89. Skowronek J, Chichel A. Brachytherapy in breast cancer: an effective alternative. Prz Menopauzalny. 2014;13:48-55.
  90. Skowronek J, Wawrzyniak-Hojczyk M, Ambrochowicz K. Brachytherapy in accelerated partial breast irradiation (APBI) - review of treatment methods. J Contemp Brachytherapy. 2012;4:152-164.
  91. Skowronek J, Bieleda G, Laski P, Kycler W. Can we improve the dose distribution for single or multi-lumen breast balloons used for Accelerated Partial Breast Irradiation? J Contemp Brachytherapy. 2013;5:134-138. https://doi.org/10.5114/jcb.2013.37776
  92. Lanciano RM, Won M, Coia LR, Hanks GE. Pretreatment and treatment factors associated with improved outcome in squamous cell carcinoma of the uterine cervix: a final report of the 1973 and 1978 patterns of care studies. Int J Radiat Oncol Biol Phys. 1991;20:667-676. https://doi.org/10.1016/0360-3016(91)90007-Q
  93. Georg D, Kirisits C, Hillbrand M, Dimopoulos J, Potter R. Image-guided radiotherapy for cervix cancer: high-tech external beam therapy versus high-tech brachytherapy. Int J Radiat Oncol Biol Phys. 2008;71:1272-1278. https://doi.org/10.1016/j.ijrobp.2008.03.032
  94. Potter R, Haie-Meder C, Van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67-77. https://doi.org/10.1016/j.radonc.2005.11.014
  95. Tanderup K, Lindegaard JC, Kirisits C, Haie-Meder C, Kirchheiner K, de Leeuw A, et al. Image Guided Adaptive Brachytherapy in cervix cancer: a new paradigm changing clinical practice and outcome. Radiother Oncol. 2016;120:365-369. https://doi.org/10.1016/j.radonc.2016.08.007
  96. Sturdza A, Potter R, Fokdal LU, Haie-Meder C, Tan LT, Mazeron R, et al. Image guided brachytherapy in locally advanced cervical cancer: improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother Oncol. 2016;120:428-433. https://doi.org/10.1016/j.radonc.2016.03.011
  97. Fokdal L, Sturdza A, Mazeron R, Haie-Meder C, Tan LT, Gillham C, et al. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: analysis from the retroEMBRACE study. Radiother Oncol. 2016;120:434-440. https://doi.org/10.1016/j.radonc.2016.03.020
  98. Georg P, Lang S, Dimopoulos JC, Dorr W, Sturdza AE, Berger D, et al. Dose-volume histogram parameters and late side effects in magnetic resonance image-guided adaptive cervical cancer brachytherapy. Int J Radiat Oncol Biol Phys. 2011;79:356-362. https://doi.org/10.1016/j.ijrobp.2009.11.002
  99. ICRU Report 89. Prescribing, recording, and reporting brachytherapy for cancer of the cervix. ICRU Report. Bethesda: ICRU. 2013; 89.
  100. Potter R, Georg P, Dimopoulos JC, Grimm M, Berger D, Nesvacil N, et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100:116-123. https://doi.org/10.1016/j.radonc.2011.07.012
  101. Rijkmans EC, Nout RA, Rutten IH, Ketelaars M, Neelis KJ, Laman MS, et al. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy. Gynecol Oncol. 2014;135:231-238. https://doi.org/10.1016/j.ygyno.2014.08.027
  102. Petric P, Kirisits C. Potential role of TRAns Cervical Endosonography (TRACE) in brachytherapy of cervical cancer: proof of concept. J Contemp Brachytherapy. 2016;8:215-220. https://doi.org/10.5114/jcb.2016.60502
  103. Viswanathan AN, Thomadsen B; American Brachytherapy Society Cervical Cancer Recommendations Committee; American Brachytherapy Society. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles. Brachytherapy. 2012;11:33-46. https://doi.org/10.1016/j.brachy.2011.07.003
  104. Viswanathan AN, Beriwal S, De Los Santos JF, Demanes DJ, Gaffney D, Hansen J, et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: high-dose-rate brachytherapy. Brachytherapy. 2012;11:47-52. https://doi.org/10.1016/j.brachy.2011.07.002