• Title/Summary/Keyword: radiocarbon(14C)

Search Result 44, Processing Time 0.025 seconds

Marine Reservoir Corrections $({\Delta}R)$ for Southern Coastal Waters of Korea (한국 남부 연안해역의 탄소동위원소연대 보정)

  • KONG, GEE SOO;LEE, CHI WON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.2
    • /
    • pp.124-128
    • /
    • 2005
  • Marine reservoir correction $({\Delta}R)$ values are measured using two species of mollusk tests collected by NFRDI in 1942 before nuclear bomb testing to convert the radiocarbon age to calendar age in Korean coastal waters more accurately. The ${\Delta}R$ values are calculated to be $-117\pm45\;^{14}C\;yr$ in the southwestern coast of Korea and $-160\pm35\;^{14}C\;yr$ in southeastern coast. These values are similar to those in Chinese coast of the Yellow Sea $(-81\pm60\~-178\pm50\;^{14}C\;yr$, indicating that regional reservoir $^{14}C$ ages of these areas are lower than mean global reservoir $^{14}C$ age. The lower ${\Delta}R$ values in these areas are presumed to be mainly caused by influence of fresh-water inflow. The ${\Delta}R$ values presented In this study enhance the accuracy in converting radiocarbon age to calendar age in Korean coastal waters.

Decadal Observation and Studies in the Amundsen Sea, Antarctica: Insights from Radiocarbon Values (10여년간의 서남극 아문젠해 관측과 연구: 방사성탄소동위원소 값을 중심으로)

  • Kim, Minkyoung
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.83-97
    • /
    • 2022
  • The Amundsen Sea in West Antarctica is one of the most affected regions by climate change, but it is one of the least studied realms due to difficulties in access. Korea Polar Research Institute (KOPRI) launched a research project in the Amundsen Sea in 2010 using the icebreaker research vessel (IBRV) Araon and has been conducting various research initiatives. In this paper, previous researches derived from the Amundsen Sea Embayment by Korean researchers are introduced. Through previous studies, researchers have been able to interpret the environmental and biogeochemical changes according to the inflow Circumpolar Deep Water (CDW) and provide information for climate models. In particular, researches using radiocarbon isotopes (14C) were introduced to understand the physical and biogeochemical mechanisms of the carbon cycle in the Amundsen Sea. Opportunely, with the construction of a second icebreaker research vessel, the direction for systematic and long-term polar data acquisition can be presented.

Stable Isotope Chemistry of Bone Collagen and Carbonate Assessed by Bone Density Fractionation

  • Shin, Ji-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3618-3623
    • /
    • 2011
  • This paper presents a stable isotope chemistry of bone collagen and carbonate. Bone carbonate has the potential to provide additional isotopic information. However, it remains controversial as to whether archaeological bone carbonate retains its original biogenic signature. I used a novel application of bone density fractionation and checked the integrity of ${\delta}^{13}C_{apa}$ values using radiocarbon dating. Diagenesis in archaeological bone carbonate still remains to be resolved in extracting biogenic information. The combined use of bone density fractionation and differential dissolution method shows a large shift in the ${\delta}^{13}C_{apa}$ values. Although ${\delta}^{13}C_{apa}$ values are improved in lighter density fractions, a large percentage of contamination in bone carbonate was reported via $^{14}C$ dating compared to that noted with bone collagen.

Early overcounting in otoliths: a case study of age and growth for gindai (Pristipomoides zonatus) using bomb 14C dating

  • Andrews, Allen H;Scofield, Taylor R.
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.53-62
    • /
    • 2021
  • Gindai (Pristipomoides zonatus) is one of six snappers in a management complex called the Deep 7 of the Hawaiian Islands. Little is known about its life history and a preliminary analysis of otolith thin sections indicated the species may exhibit moderate growth with a lifespan approaching 40 years. Preliminary age estimates from the previous study were reinvestigated using the same otolith sections in an attempt to validate those ages with bomb radiocarbon (14C) dating. From the misalignment of birth years for the otolith 14C measurements with regional references - the post-peak bomb 14C decline period - it was concluded that previous ages were inflated from overcounting of the earliest growth zone structure in otolith sections. The oldest gindai was re-aged to 26 years once the age reading was adjusted for early overcounting, 13 years younger than the original estimate of 39 years for this fish. In general, the earliest otolith growth of gindai was massive and complicated by numerous subannual checks. The approach of lumping the early growth structures was supported by the alignment of 14C measurements from otolith core material (first year of growth). The result was greater consistency of calculated birthdates with the 14C decline reference, along with minor offsets that may indicate age estimation was imprecise by a few years for some individuals. The revised von Bertalanffy growth function applied to the validated age-at-length estimates revealed more rapid growth (k = 0.378 cf. 0.113) and a lifespan of approximately 30 years. The findings presented here are a case study of how the bomb 14C decline period can be used as a tool in the refinement of age reading protocols.

Penetrations of flupyrazofos against Plutella xylostella(Lepidoptera :Yponomeutidae) and Spodoptera exigua(Lepidoptera : Noctuidae) (배추좀나방과 파밤나방에 대한 flupyrazofos의 체벽 투과량)

  • Lee, Sang-Guei;Hwang, Chang-Yeon;Han, Man-Jong;Yoo, Jai-Ki;Lee, Hoi-Seon
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.1
    • /
    • pp.44-50
    • /
    • 2000
  • Tolerance mechanism to flupyrazofos was examined with Plutella xylostella (L.) and Spodoptera exigua by investigating the penetration rate of flupyrazofos into larvae body. On determining effective washing of $^{14}C$-flupyrazofos, the washing volume to recover over 98% of $^{14}C$-flupyrazofos was observed at three times (each time: 1 mL). To select a suitable solvent, the recovery rates of each solvent in 3rd instar larvae of DBM were above 98%, but the washing rates of acetone, hexane and ethyl-acetate were 85.1%, 67.2% and 68.4%, respectively. In the BAW larvae, although the recovery rates of each solvent were above 99%, the washing rates of acetone, hexane and ethyl-acetate were 83.5%, 65.9% and 71.7%, respectively. The $PT_{50}$ values of $^{14}C$-flupyrazofos were 0.731 h (44 min) in the DBM larva and 0.504 h (30 min) in the BAW larva. Radiocarbon in acetone washing (external fraction) decreased more quickly in the BAW larva than in the DBM larva, and amount of radiocarbon in larvae body increased more quickly with time in the DBM larva than in the BAW larva. In contrast, amount of radiocarbon in excreta increased more rapidly with time in the BAW larva than in the DBM larva.

  • PDF

Optimum conditions of benzene synthesis and liquid scintillation counting fir radiocarbon dating ($^14C$년대측정을 위한 벤젠 합성 및 액체섬광계측의 최적 조건)

  • Kang, Hyung-Tea;Nah, Kyung-Ym
    • 보존과학연구
    • /
    • s.15
    • /
    • pp.21-32
    • /
    • 1994
  • Optimum conditions for benzene synthesis and liquid scintillation counting have been studied for the determination of radiocarbon age. In benzene synthesis the carbon dioxide converted to benzene with high efficiency of 91%. Yields of each step with 10L of carbon dioxide were $CO_2$ $\rightarrow$$C_2H_2$(94%), $C_2H_2$$\rightarrow$$C_6H_6$(96%) and$CO_2$$\rightarrow$$C_6H_6$(91%), respectively. Benzene synthesized from oxalate was measured with purity of 95% by GC /MS. $\delta^13$(C$^13$C/$^12$C) of oxalate was measured to $-24.7\{textperthousand}$ by massspectrometer. For liquid scintillation counting of benzene sample low background and highest FOM were measured in 0.5 ml cocktail and 3 ml standard solution with the range of 15.4∼74.9 KeV window setting. Oxalate and background samples weremeasured to $28.7\pm0.12$cpm and $3.92\pm0.04$ cpm in 15.4∼74.9 KeV

  • PDF

Sediment Trap Studies to Understand the Oceanic Carbon Cycling: Significance of Resuspended Sediments (퇴적물 트랩을 이용한 해양 탄소 순환 연구 동향: 재부유 퇴적물의 중요성)

  • KIM, MINKYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.145-166
    • /
    • 2021
  • For several decades, sediment traps have served as one of the key tools for constraining the biological carbon pump (BCP), a process that vertically exports particulate organic carbon (POC) and associated biogenic materials from marine primary production in surface waters to the deep ocean interior. In this paper, I introduced the general methods, the current status of global sediment trap studies, and importance of it to understand the deep ocean carbon cycling. Recent studies suggest that sinking POC in the deep ocean are more complex and spatio-temporally heterogeneous than we considered. Especially researches those studied resuspended and laterally transported particles are presented. Researches that used organic (radiocarbon; 14C) and inorganic (Al) tracers to understand the oceanic POC cycling and the significance of resuspended particles are reviewed, and the importance of radiocarbon study by using MICADAS (Mini radioCarbon Dating Systems) is emphasized.

The Calendar Date of Pottery with Ring-Rim -Appearance Date of the Slim Bronze Dagger Culture and Ironware- (점토대토기의 실연대 -세형동검문화의 성립과 철기의 출현연대-)

  • Lee, Chang Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.48-101
    • /
    • 2010
  • This paper estimated the calendar date of pottery with ring-rim(粘土帶土器) with the radiocarbon dating. This was based on archaeological facts with comparing line relations and radiocarbon dates of Yayoi pottery(彌生土器). As a result, I understood that pottery with circle ring-rim(圓形粘土帶土器) appeared in BC 6c, pottery with triangle ringrim(三角形粘土帶土器) appeared at the time in BC 300 . Based on the calendar date and aspect of ironware and pottery in grave, I kept in BC 4c with appearance date of ironware. And I kept in BC 5c with appearance date of the slim bronze dagger culture. Korea and Japan common chronological order were built for the first time based on radiocarbon dates, line relations of pottery with ring-rim and Yayoi pottery. This is the calendar date to date back approximately 100~300 years from the existing the calendar date. Current periodization does not match in the calendar date when I built it newly. Therefore I suggested it as follows. Early iron age is from the first~middle part BC 4c to BC 100. And the latter half of Bronze age is from BC 6c to the front appearance of ironware. Then Songguk-ri type(松菊里式) becomes staudard type of pottery in the middle stage of Bronze age.

Study on production process of graphite for biological applications of 14C-accelerator mass spectrometry

  • Ha, Yeong Su;Kim, Kye-Ryung;Cho, Yong-Sub;Choe, Kyumin;Kang, Chaewon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Accelerator mass spectrometry (AMS) is a powerful detection technique with the exquisite sensitivity and high precision compared with other traditional analytical techniques. Accelerator mass spectrometry can be widely applied in the technique of radiocarbon dating in the fields of archeology, geology and oceanography. The ability of accelerator mass spectrometry to measure rare 14C concentrations in microgram and even sub-microgram amounts suggests that extension of 14C-accelerator mass spectrometry to biomedical field is a natural and attractive application of the technology. Drug development processes are costly, risky, and time consuming. However, the use of 14C-accelerator mass spectrometry allows absorption, distribution, metabolism and excretion (ADME) studies easier to understand pharmacokinetics of drug candidates. Over the last few decades, accelerator mass spectrometry and its applications to preclinical/clinical trials have significantly increased. For accelerator mass spectrometry analysis of biological samples, graphitization processes of samples are important. In this paper, we present a detailed sample preparation procedure to apply to graphitization of biological samples for accelerator mass spectrometry.