• Title/Summary/Keyword: radio frequency spectrum

검색결과 369건 처리시간 0.028초

Multi frequency band noise suppression system using signal-to-noise ratio estimation (신호 대 잡음비 추정 방법을 이용한 다중 주파수 밴드 잡음 억제 시스템)

  • Oh, In Kyu;Lee, In Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • 제35권2호
    • /
    • pp.102-109
    • /
    • 2016
  • This paper proposes a noise suppression method through SNR (Singal-to Noise Ratio) estimation in the two microphone array environment of close spacing. The conventional method uses a noise suppression method for a gain function obtained through the SNR estimation based on coherence function from full band. However, this method cause performance decreased by the noise damage that affects all the feature vector component. So, we propose a noise suppression method that allocates a frequency domain signal into N constant multi frequency band and each frequency band gets a gain function through SNR estimation based on coherence function. Performance evaluation of the proposed method is shown by comparison with PESQ (Perceptual Evaluation of Speech Quality) value which is an objective quality evaluation method provided by the ITU-T (International Telecommunications Union Telecommunication).

A Study on Interference Analysis between FM Broadcasting Service and ILS Localizer (FM 방송서비스와 ILS localizer사이의 간섭분석에 관한 연구)

  • Kim, Jin-Young;Kim, Eun-Cheol;Yang, Jae-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제45권3호
    • /
    • pp.7-18
    • /
    • 2008
  • Radio systems decline in the system performances when one system is interfered from the other system. System parameters, which are operating frequency, transmit power, and so on, need to be determined in order that there is no interference between radio systems. We investigate the interference from the sound broadcasting service in the band 87.5-108 MHz to the ILS localizer, one of the aeronautical services, in the band of 108-112 MHz. The results are compared with the interference criteria. And then several system parameters, which are frequency, transmit power, and location, are determined in order to avoid the interference from the FM sound broadcasting service which occupies the frequency band near the band of the aeronautical services. The results of this paper can be applied to set up system parameters of the ILS localizer so that system performance can be maximized. Besides, the result of this paper can be applied for determining spectrum management policy.

Performance of Cooperative NOMA Systems with Cognitive User Relay (상황인지 사용자 릴레이를 채택한 협동 NOMA 시스템의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제18권5호
    • /
    • pp.69-75
    • /
    • 2018
  • Recently, Non-orthogonal multiple access (NOMA) has been focused for the next generation multiple access, which has more spectral efficiency under the limited spectrum bandwidth. Moreover, the spectrum efficiency can be improved by cognitive radio in which the unlicensed secondary users can access the spectrum that is used by the licensed primary user under the limited interference. Hence, we consider the combination of NOMA and cognitive radio, and derive the performance of the cognitive cooperative NOMA system. For the cooperation, a relay is selected among near users, and the selection combining is assumed at a far user. The outage probability of the selected relay and the far user is derived in closed-form, respectively. The provided numerical results are matched well with the Monte Carlo simulation. Numerical results showed that the performance of the relay is affected from the power allocation coefficient, the minimum outage probability is observed at 0.86 of the power allocation coefficient for far user under the given conditions. More than 15 dB of signal-to-noise ratio is required to meet the outage probability of $1{\times}10^{-13}$ for the far user with the frequency acquisition probability of 0.5 compared to that of 1. It shows that the performance of the far user is very sensitive to the acquisition probability of the cognitive relay.

A Non-coherent IR-UWB RF Transceiver for WBAN Applications in 0.18㎛ CMOS (0.18㎛ CMOS 공정을 이용한 WBAN용 비동기식 IR-UWB RF 송수신기)

  • Park, Myung Chul;Chang, Won Il;Ha, Jong Ok;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제53권2호
    • /
    • pp.36-44
    • /
    • 2016
  • In this paper, an Impulse Radio-Ultra Wide band RF Transceiver for WBAN applications is implemented in $0.18{\mu}m$ CMOS technology. The designed RF transceiver support 3-5GHz UWB low band and employs OOK(On-Off Keying) modulation. The receiver employs non-coherent energy detection architecture to reduce complexity and power consumption. For the rejection of the undesired interferers and improvement of the receiver sensitivity, RF active notch filter is integrated. The VCO based transmitter employs the switch mechanism. As adapt the switch mechanism, power consumption and VCO leakage can be reduced. Also, the spectrum mask is always same at each center frequency. The measured sensitivity of the receiver is -84.1 dBm at 3.5 GHz with 1.579 Mbps. The power consumption of the transmitter and receiver are 0.3nJ/bit and 41 mW respectively.

A Frequency-Sharing Method to Use Frequency Resources Efficiently (효율적인 주파수 이용을 위한 주파수 공유 방법)

  • Kang, Sang-Gee;Hwang, Taek-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제12권8호
    • /
    • pp.1349-1355
    • /
    • 2008
  • Recently many short-range transceiver systems, such as ZigBee, Bluetooth and RFID(Radio Frequency Identification), have been developed. These systems are mostly low-power transceivers. In the near future many more low-power transceivers are appeared for WPAN(Wireless Personal Area Network) and interference mitigation technologies are necessary to the low-power transceivers for using frequency resources efficiently. In this paper we consider two methods for sharing frequency resources. The first case is that a frequency band previously assigned fer a certain system is shared and the second case is that the white frequency band is shared. We study the method and conditions for sharing frequency resources in the above two cases. When a frequency band is shared with ZigBee, RFID, DCP (Digital Cordless Phone) and Bluetooth as an example for the first case, the sharing conditions are investigated and the results are presented. We propose a balancing factor to maintain an equal transmitting conditions between systems having a different interference mitigation technique. In the interference simulation we use FH(Frequency Hopping) as a reference system and 0.9 of a balancing factor for LBT(Listen Before Talk) and 0.8 for DS(Direct Spreading). From the simulation results we know that a balancing factor reduces interference probability therefore many more systems can be operated in the same frequency bands compared with the case without using a balancing factor.

Allowable Interference Criteria Between Digital FWSs (디지털 FWS간 허용 간섭 기준)

  • Lee, Ki-Hwan;Lee, Joo-Hwan;Suh, Kyoung-Whoan;Song, Ju-Bin
    • Journal of Broadcast Engineering
    • /
    • 제13권4호
    • /
    • pp.479-487
    • /
    • 2008
  • The method to determine allowable interference criteria is required due to new digital FWSs(Fixed Wireless Systems) adding to allowable frequency bands, besides current FWSs and digital FWSs. In this paper, we suggested a method to define allowable interference between digital FWSs. Types of interference for FWS were defined and channel characteristics were analyzed. Allowable interference criteria were analyzed using the suggested method for M-ary QAM modulations, which is typical modulation technique of digital FWS.

A Novel Frequency Allocation Algorithm for Limited Radio Resource Environments (제한된 무선 자원 환경에 적합한 주파수 자동지정 알고리즘)

  • Koo, Bonhong;Chae, Chan-Byoung;Park, Sung-Ho;Park, Hwi-Sung;Ham, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제40권9호
    • /
    • pp.1719-1721
    • /
    • 2015
  • In this paper, we investigate a frequency assignment problem from graph theory for military communications. We propose an algorithm based on the graph coloring theory and confirm that we utilize 0.77 times lower number of frequencies. We also propose a hybrid algorithm that facilitates a trade-off between the range and the spectrum utilization gain.

A Study on Calculation of Protection Ratio for Frequency Coordination in Microwave Relay System Networks (M/W 중계 시스템 망의 주파수 조정을 위한 보호비 계산에 대한 연구)

  • Suh, Kyoung-Whoan;Lee, Joo-Hwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 한국전자파학회 2005년도 종합학술발표회 논문집 Vol.15 No.1
    • /
    • pp.125-130
    • /
    • 2005
  • This paper suggests an efficient method of protection ratio calculation and shows some calculated results applicable to frequency coordination in microwave relay system networks, and the net filter discrimination (NFD) associated with Tx spectrum mask and overall Rx filter characteristics has been examined to obtain the adjacent channel protection ratio. The protection ratio comprises several factors such as C/N of modulation scheme, noise-to-interference ratio, multiple interference allowance, fade margins of multi-path and rain attenuation, and NFD. According to computed results for 6.7 GHz, 64-QAM, and 60 km at BER $10^{-6}$, fade margin and co-channel protection ratio are 41.1 and 75.2 dB, respectively, In addition, NFD for channel bandwidth of 40 MHz reveals 28.9 dB at the first adjacent channel, which results in adjacent channel protection ratio of 46.3 dB. The proposed method provides some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter wave relay system networks.

  • PDF

Optimal Signal Amplitude of Orthogonal Frequency-Division Multiplexing Systems in Dimmable Visible Light Communications

  • Yun, Kyungsu;Lee, Changho;Ahn, Kang-Il;Lee, Rimhwan;Jang, Ja-Soon;Kwon, Jae Kyun
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.459-465
    • /
    • 2014
  • Visible light communications (VLC) using the intensity modulation of light-emitting diodes (LEDs) provides a new communication medium to overcome the shortage of radio spectrum, and allows reuse of LED lighting infrastructures. Orthogonal frequency-division multiplexing (OFDM) was introduced to VLC for its merits in mitigating the fading effects resulting from delay spread, and in avoiding low-frequency ambient interference. Noise and clipping are two major factors that degrade the performance of OFDM in VLC. A larger signal easily overcomes noise, but experiences impairment by clipping. Therefore, degradation due to clipping has a trade-off relationship with that due to noise, depending on the signal amplitude of OFDM. In this paper, the optimal signal amplitude in the trade-off is obtained by simulation when the dimming and LED intensity are given. The former indicates a user's requirement for lighting, and the latter represents the channel quality. The required LED intensity-to-noise ratio, as the channel quality that guarantees dimming as well as an adequate bit-error rate (BER), is also discussed.

Interference Mitigation Technique for the Sharing between IMT-Advanced and Fixed Satellite Service

  • Lim, Jae-Woo;Jo, Han-Shin;Yoon, Hyun-Goo;Yook, Jong-Gwan
    • Journal of Communications and Networks
    • /
    • 제9권2호
    • /
    • pp.159-166
    • /
    • 2007
  • In this paper, we propose an efficient and robust interference mitigation technique based on a nullsteering multi-user multiple-input multiple-output (MU-MIMO) spatial division multiple access (SDMA) scheme for frequency sharing between IMT-advanced and fixed satellite service (FSS) in the 3400-4200 and 4500-4800 MHz bands. In the proposed scheme, the pre-existing precoding matrix for SDMA unitary precoded (UPC) MIMO proposed by the authors is modified to construct nulls in the spatial spectrum corresponding to the direction angles of the victim FSS earth station (ES). Furthermore, a numerical formula to calculate the power of the interference signal received at the FSS ES when IMT-Advanced base stations (BS) are operated with the interference mitigation technique is presented. This formula can be derived in closed form and is simply implemented with the help of simulation, resulting in significantly reduced time to obtain the solution. Finally, the frequency sharing results are analyzed in the co-channel and adjacent channel with respect to minimum separation distance and direction of FSS earth station (DOE). Simulation results indicate that the proposed mitigation scheme is highly efficient in terms of reducing the separation distance as well as robust against DOE estimation errors.