• Title/Summary/Keyword: radio frequency energy harvesting

Search Result 31, Processing Time 0.026 seconds

Outage Analysis and Optimization for Time Switching-based Two-Way Relaying with Energy Harvesting Relay Node

  • Du, Guanyao;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.545-563
    • /
    • 2015
  • Energy harvesting (EH) and network coding (NC) have emerged as two promising technologies for future wireless networks. In this paper, we combine them together in a single system and then present a time switching-based network coding relaying (TSNCR) protocol for the two-way relay system, where an energy constrained relay harvests energy from the transmitted radio frequency (RF) signals from two sources, and then helps the two-way relay information exchange between the two sources with the consumption of the harvested energy. To evaluate the system performance, we derive an explicit expression of the outage probability for the proposed TSNCR protocol. In order to explore the system performance limit, we formulate an optimization problem to minimize the system outage probability. Since the problem is non-convex and cannot be directly solved, we design a genetic algorithm (GA)-based optimization algorithm for it. Numerical results validate our theoretical analysis and show that in such an EH two-way relay system, if NC is applied, the system outage probability can be greatly decreased. Moreover, it is shown that the relay position greatly affects the system performance of TSNCR, where relatively worse outage performance is achieved when the relay is placed in the middle of the two sources. This is the first time to observe such a phenomena in EH two-way relay systems.

Frequency Selection Methods in RF-Powered Backscatter Cognitive Radio Networks with Spectrum Sensing (스펙트럼 센싱을 적용한 인지 무선 기반 백스케터 네트워크의 주파수 선택 기법)

  • Hong, Seung Gwan;Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.98-102
    • /
    • 2017
  • In this paper, we study RF-powered backscatter cognitive radio networks to improve the performance for the secondary user which is backscatter radio based wireless sensors. In our proposed model, we consider an avoiding the doubly round-trip attenuation to add a carrier emitter and utilization of spectrum sensing information. When the primary channel is busy, the secondary user is able to harvest RF energy from the channel through a hybrid-access point (H-AP) and a carrier emitter. When the channel becomes idle, the secondary user will be use the harvested energy to operate wireless sensors, to use the sensing and to backscatter through the carrier emitter. We model mathematically the deterministic and multisource elements of a number of tagged channels. In the proposed communication environment, we show the BER performance of the backscatter communication using WiFi signal.

An Adaptive-Harvest-Then-Transmit Protocol for Wireless Powered Communications: Multiple Antennas System and Performance Analysis

  • Nguyen, Xuan Xinh;Do, Dinh-Thuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1889-1910
    • /
    • 2017
  • This paper investigates a protocol so-called Adaptive Harvest Then Transmit (AHTT) for wireless powered communication networks (WPCNs) in multiple-input single-output (MISO) downlink systems, which assists in transmitting signals from a multi-antenna transmitter to a single-antenna receiver. Particularly, the power constrained relay is supplied with power by utilizing radio frequency (RF) signals from the source. In order to take advantage of multiple antennas, two different linear processing schemes, including Maximum Ratio Combining (MRC) and Selection Combination (SC) are studied. The system outage capacity and ergodic capacity are evaluated for performance analysis. Furthermore, the optimal power allocation is also considered. Our numerical and simulation results prove that the implementation of multiple antennas helps boost the energy harvesting capability. Therefore, this paper puts forward a new way to the energy efficiency (EE) enhancement, which contributes to better system performance.

Battery-less Pork Freshness Monitoring Based on High-Efficiency RF Energy Harvesting

  • Nguyen, Nam Hoang;Lam, Minh Binh;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.293-302
    • /
    • 2020
  • Food safety has emerged as a growing concern for human health in recent times. Consuming contaminated food may lead to serious health problems, and therefore, a system for monitoring food freshness that is both non-detrimental to the quality of food and highly accurate is required to ensure that only high-quality fresh food packages are provided to the customers. This paper proposes a method to monitor and detect food quality using a compact smart sensor tag. The smart tag is composed of three ultra-low-power sensors, which monitor four major indicators of food freshness: temperature, humidity, and the concentrations of ammonia and hydrogen sulfide gases. An RF energy scavenging circuit is integrated into the smart sensor tag to harvest energy from radio waves at a high frequency of 13.56 MHz to supply sufficient power to the tag. Experimental results show that the proposed energy harvester can efficiently obtain energy at a distance of approximately 40 cm from a 4 W reader. In addition, the proposed smart sensor tag can operate without any battery, thereby eliminating the requirement of frequent battery replacement and consequently decreasing the cost. Meanwhile, the freshness of preserved pork is continuously monitored under two conditions--room temperature and refrigerator temperature--both of which are the most common temperatures under which food is generally stored. The food-monitoring experiments are conducted over a period of one week using the proposed battery-less tag. Based on the experimental results, the food assessment is classified into four categories: fresh, normal, low, and spoiled.

A study on wireless power generation for marine information acquisition using EAP actuator (EAP 액추에이터를 이용한 해양 정보 취득용 무선 전원 발생에 관한 연구)

  • Jeong, Eun-A;Lee, Kee-Yoon;Jeong, Hwang-Hun;Yun, So-Nam
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.49-53
    • /
    • 2011
  • This study concerns about wireless power generation that uses the energy harvester with EAP actuator. The UWSN(Underwater Wireless Sensor Network) has been considered many times by many researches. Because the information of underwater is getting important to secure the resource or to predict the meteorological phenomena. But the sensor node in the UWSN is driven by the acoustic wave to communicate with other sensor node. And this acoustic wave usually spends a 100 times energy than the RF(Radio Frequency) wave due to transfermation medium(sea water). Therefore the power source of the sensor node is very important that is needed to improve in the UWSN. For this purpose, the energy harvester is made by the acrylic elastomer in this study. And the electrode is modified with an aluminum impurity to improve the efficiency of energy harvester. After that, the modified energy harvester is experimented to confirm the improvement of the energy efficiency.

Simultaneous Wireless Information and Power Transfer in Two-hop OFDM Decode-and-Forward Relay Networks

  • Di, Xiaofei;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.152-167
    • /
    • 2016
  • This paper investigates the simultaneous wireless information and power transfer (SWIPT) for two-hop orthogonal frequency division multiplexing (OFDM) decode-and-forward (DF) relay network, where a relay harvests energy from radio frequency signals transmitted by a source and then uses the harvested energy to assist information transmission from the source to its destination. The power splitting receiver is considered at the relay. To explore the performance limit of such a SWIPT-enabled system, a resource allocation (RA) optimization problem is formulated to maximize the achievable information rate of the system, where the power allocation, the subcarrier pairing and the power splitting factor are jointly optimized. As the problem is non-convex and there is no known solution method, we first decompose it into two separate subproblems and then design an efficient RA algorithm. Simulation results demonstrate that our proposed algorithm can achieve the maximum achievable rate of the system and also show that to achieve a better system performance, the relay node should be deployed near the source in the SWIPT-enabled two-hop OFDM DF relay system, which is very different from that in conventional non-SWIPT system where the relay should be deployed at the midpoint of the line between the source and the destination.

Joint Routing, Scheduling, and Power Control for Wireless Sensor Networks with RF Energy Transfer Considering Fairness (무선 에너지 전송 센서망에서의 공평성을 고려한 라우팅, 스케줄링, 전력 제어)

  • Moon, Seokjae;Roh, Hee-Tae;Lee, Jang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.206-214
    • /
    • 2016
  • Recently, radio frequency energy transfer (RFET) attracts more and more interests for powering sensor nodes in the wireless sensor network (WSN). In the conventional WSN, reducing energy consumption of sensor nodes is of primary importance. On the contrary, in the WSN with RFET, reducing energy consumption is not an important issue. However, in the WSN with RFET, the energy harvesting rate of each sensor node depends on its location, which causes the unbalanced available energy among sensor nodes. Hence, to improve the performance of the WSN with RFET, it is important to develop network protocols considering this property. In this paper, we study this issue with jointly considering routing, scheduling, and power control in the WSN with RFET. In addition, we study this issue with considering two different objectives: 'Max-min' with which we tries to maximize the performance of a sensor node having the minimum performance and 'Max-min fairness' with which we tries to achieve max-min fairness among sensor nodes. We show that our solutions can improve network performance significantly and we also discuss the differences between 'Max-min' and 'Max-min fairness'.

Study on the Building Method of a Sensor Network based on BLE Beacons with WPTS (WPTS BLE 비콘 기반 센서 네트워크 구축 방안 연구)

  • Jang, Ho-Deok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2022
  • This paper investigates the method to implement a RF (Radio Frequency) energy harvesting sensor node and to build a sensor network using a CATV network and a leaky coaxial cable. The power supply of a sensor node is designed with the WPTS (Wireless Power Transfer System) receiver operating at 915MHz. A sensor network has limited coverage by the loss of RF signal at a wireless transmission link. The paper proposes to build a sensor network that the BLE signal of a sensor and the signal of a WPTS power transmitter are transmitted through a coaxial cable of a CATV network by utilizing WOC (WiFi over Coax) technology and radiates at a leaky coaxial cable. The length of a leaky coaxial cable and the total loss of a wire link are allowed to the point that the RSSI of a sensor node is more than the minimum value (-78dBm) and lead to extend wireless coverage.

Enhanced Energy Harvester Based on Vibration Analysis of Bicycle Riding (자전거 주행의 진동 분석에 기반한 에너지 수확 증진 기술 개발)

  • Yeo, Jung-Jin;Ryu, Mun-Ho;Kim, Jung-Ja;Yang, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • Bicycle has a large amount of kinetic energy available for energy harvesting technology in its speedy and balanced riding movement. Systematic and realistic analysis of its dynamic property is essential to improve the efficiency of energy harvester. However, there has not been enough researches about precise measurement or analysis of bicycle dynamics on real roads. This study aims to investigate the characteristics of vibrational movement of bicycle using MEMS-based accelerometer and to develop a prototype of electromagnetic energy harvester with nonlinear behavior which is proper to the random vibrations accompanied in bicycle riding. The vibrational components have average magnitude of 1 g and turn out to be independent of riding speed. The developed prototype of energy harvester was installed on a front port of a bicycle to use this ambient vibration and generated an average electrical power of 1.5 mW which is enough to support power for most of portable sensors and short range radio-frequency communication. Further study about isolation of vibration from a rider and conversion efficiency is ongoing. The developed energy harvester is expected to be a platform technology for sustainable portable power supply for various smart IT devices and applications.

Joint Optimization of Mobile Charging and Data Gathering for Wireless Rechargeable Sensor Networks

  • Tian, Xianzhong;He, Jiacun;Chen, Yuzhe;Li, Yanjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3412-3432
    • /
    • 2019
  • Recent advances in radio frequency (RF) power transfer provide a promising technology to power sensor nodes. Adoption of mobile chargers to replenish the nodes' energy has recently attracted a lot of attention and the mobility assisted energy replenishment provides predictable and sustained power service. In this paper, we study the joint optimization of mobile charging and data gathering in sensor networks. A wireless multi-functional vehicle (WMV) is employed and periodically moves along specified trajectories, charge the sensors and gather the sensed data via one-hop communication. The objective of this paper is to maximize the uplink throughput by optimally allocating the time for the downlink wireless energy transfer by the WMV and the uplink transmissions of different sensors. We consider two scenarios where the WMV moves in a straight line and around a circle. By time discretization, the optimization problem is formulated as a 0-1 programming problem. We obtain the upper and lower bounds of the problem by converting the original 0-1 programming problem into a linear programming problem and then obtain the optimal solution by using branch and bound algorithm. We further prove that the network throughput is independent of the WMV's velocity under certain conditions. Performance of our proposed algorithm is evaluated through extensive simulations. The results validate the correctness of our proposed theorems and demonstrate that our algorithm outperforms two baseline algorithms in achieved throughput under different settings.