• Title/Summary/Keyword: radiation sources

Search Result 591, Processing Time 0.024 seconds

Measurements and Assessments on Shielding Performance of FCTC10 60Co Transport Container

  • Zhuang, Dajie;Zhang, Guoqing;Li, Guoqiang;Wang, Renze
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.310-314
    • /
    • 2016
  • Background: FCTC10 container is designed to transport $^{60}Co$ radioactive sources used in irradiation industry. It belongs to Type B(U) Category III (yellow) package when being loaded with a $^{60}Co$ source of $1.8{\times}10^5$ Ci. Materials and Methods: The container is constituted of shielding container, basket, protective cover and bracket. Shielding ability is provided mainly by stainless steel shells, tungsten alloy and lead among steel shells. Radiation level around the container has been calculated with both Monte Carlo simulations and measurements. Results and Discussion: It is proven that the shielding performance of the container fulfills the requirements in GB11806-2004 (Regulations for the safe transport of radioactive material, China Standard Press). Exposure doses to workers and to critical groups of public were calculated based on hypothetical exposure scene according to transport practice experience. Conclusion: The results show that doses to workers and public are less than the constraint dose considered in design, and the radiation level would be increased less than a factor of 2 under design basis accidents.

Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region

  • Sayyed, M.I.;Akman, F.;Kacal, M.R.;Kumar, A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.860-866
    • /
    • 2019
  • The lead element or its salts are good radiation shielding materials. However, their toxic effects are high. Due to less toxicity of bismuth salts, the radiation shielding properties of the bismuth salts have been investigated and compared to that of lead salts to establish them as a better alternative to radiation shielding material to the lead element or its salts. The transmission geometry was utilized to measure the mass attenuation coefficient (${\mu}/{\rho}$) of different salts containing lead and bismuth using a high-resolution HPGe detector and different energies (between 81 and 1333 keV) emitted from point sources of $^{133}Ba$, $^{57}Co$, $^{22}Na$, $^{54}Mn$, $^{137}Cs$, and $^{60}Co$. The experimental ${\mu}/{\rho}$ results are compared with the theoretical values obtained through WinXCOM program. The theoretical calculations are in good agreement with their experimental ones. The radiation protection efficiencies, mean free paths, effective atomic numbers and electron densities for the present compounds were determined. The bismuth fluoride ($BiF_3$) is found to have maximum radiation protection efficiency among the selected salts. The results showed that present salts are more effective for reducing the intensity of gamma photons at low energy region.

A Review of Dose Rate Meters as First Responders to Ionising Radiation

  • Akber, Aqeel Ahmad;Wiggins, Matthew Benfield
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.3
    • /
    • pp.97-102
    • /
    • 2019
  • Background: Dose rate meters are the most widely used, and perhaps one of the most important tools for the measurement of ionising radiation. They are often the first, or only, device available to a user for an instant check of radiation dose at a certain location. Throughout the world, radiation safety practices rely strongly on the output of these dose rate meters. But how well do we know the quality of their output? Materials and Methods: This review is based on the measurements 1,158 commercially available dose rate meters of 116 different makes and models. Expected versus the displayed dose patterns and consistency was checked at various dose rates between $5{\mu}Gy{\cdot}h^{-1}$ and $2mGy{\cdot}h^{-1}$. Samples of these meters were then selected for further investigation and were exposed to radiation sources covering photon energies from 50 keV to 1.5 MeV. The effect of detector orientation on its reading was also investigated. Rather than focusing on the angular response distribution that is often reported by the manufacturer of the device, this study focussed on the design ergonomics i.e. the angles that the operator will realistically use to measure a dose rate. Results and Discussion: This review shows the scope and boundaries of the ionising radiation dose rate estimations that are made using commonly available meters. Observations showed both inter and intra make and model variations, occasional cases of instrument failure, instrument walk away, and erroneous response. Conclusion: The results indicate the significance of selecting and maintaining suitable monitors for specific applications in radiation safety.

Dose assessment of HDR intracavitary brachytherapy using different sources (강내 근접치료에 사용되는 고선량률 Ir-192선원에 따른 치료계획시스템의 선량평가)

  • Yang, Oh-Nam;Lim, Chung-Hwan;Kim, Dae-Yong;Choi, Won-Sik;Shin, Sung-Soo;Ahn, Woo-Sang
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.205-206
    • /
    • 2013
  • 자궁경부암 근접치료를 시행했던 환자 10명을 대상으로 동일한 처방에 대한 기하학적 특성이 다른 Ir-192선원을 치료계획시스템을 이용하여 선량평가를 비교 분석 해 보았다.

  • PDF

Measurement and Analysis of the Korean NDGPS Radiation Spectrum

  • Kim, Young-Wan;Jee, Suk-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.225-230
    • /
    • 2012
  • The Korean nationwide differential global positioning system (NDGPS) reference station transmits a global positioning system (GPS) enhancement signal using minimum shift keying modulation with a 200 bps data rate. The ocean-based DGPS covers the service area of 100 NM with 300 W output power; on the other hand, the land-based DGPS transmits the output power of 500 W, which covers the service area of 100 km. The DGPS reference stations with high output power can radiate spurious signals, which may act as interference sources affecting the other DGPS reference stations or the wireless ground stations that utilize the medium frequency band. In this paper, the radiation spectrums of the DGPS reference stations are measured and analyzed in the spurious domain. The DGPS radiation spectrums are evaluated from the perspective of the interference effect.

Treatment Planning Software for High Dose Rate Remote Afterloading Brachytherapy of Uterine Cervical Cancer (Personal computer를 이용한 자궁경부암의 고선량을 강내치료 계획)

  • Huh, Seung-Jae;Kang, Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.183-186
    • /
    • 1986
  • In brachytherapy of uterine cervical cancer using the high dose rate remote afterloading system, it is of prime importance to determine the position of the radiation sources and to estimate the irradiation time. However, calculation with manual method is so time consuming and laborious, that authors designed a software as an aid to intracavitary radiotherapy Planning using the personal computer to obtain the precision of treatment without being too complicated for routine use. Optimal source arrangement in combination with dose rate at each specific points and irradiation time can be easily determined using this software in several minutes.

  • PDF

Comparison of Irradiation Effect of Different Radiation Types on Decontamination of Microorganisms in Red Pepper Powder (고춧가루 오염 미생물의 제어에서 방사선종별 조사 효과)

  • Park, Kyung-Sook
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • This study investigated the reduction of microbial population and sensory properties in red pepper powders irradiated by gamma ray, electron beam, and X-ray. Populations of total aerobic bacteria and yeast & molds in red pepper powders were decreased by irradiation treatment in a dose-dependent manner. Gamma ray, electron beam, and X-ray at doses above 8 kGy caused 100% inhibition on growth of aerobic bacteria in red pepper powders. Inhibitory activity of X-ray on sterilization of red pepper powders was significantly equal to or higher compared to gamma ray and electron beam. Color and off flavor in red pepper powders were no significant difference among the control and samples irradiated with gamma ray, electron beam, and X-ray. As a result, the gamma ray, electron beam, and X-ray irradiation can be used to sterilize the microbial growth in red pepper powders without quality loss.

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation

  • Asal, Sinan;Erenturk, Sema Akyil;Haciyakupoglu, Sevilay
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1634-1641
    • /
    • 2021
  • Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.

Optimization of Dose Distribution for High Dose Rate Intraluminal Therapy (고선량율 관내 방사선치료를 위한 종양선량분포의 최적화에 대한 연구)

  • Chu, Sung-Sil;Kim, Gwi-Eon;Loh, Juhn-Kyu
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.243-252
    • /
    • 1994
  • The use of high dose rate remote afterloading system for the treatment of intraluminal lesions necessitates the need for a more accurate of dose distributions around the high intensity brachytherapy sources, doses are often prescribed to a distance of few centimeters from the linear source, and in this range the dose distribution is very difficult to assess. Accurated and optimized dose calculation with stable numerical algorithms by PC level computer was required to treatment intraluminal lesions by high dose rate brachytherapy system. The exposure rate from sources was calculated with Sievert integral and dose rate in tissue was calculated with Meisberger equation, An algorithm for generating a treatment plan with optimized dose distribution was developed for high dose rate intraluminal radiotherapy. The treatment volume becomes the locus of the constrained target surface points that is the specified radial distance from the source dwelling positions. The treatment target volume may be alternately outlined on an x-ray film of the implant dummy sources. The routine used a linear programming formulism to compute which dwell time at each position to irradiate the constrained dose rate at the target surface points while minimizing the total volume integrated dose to the patient. The exposure rate and the dose distribution to be confirmed the result of calculation with algorithm were measured with film dosimetry, TLD and small size ion chambers.

  • PDF

Chamber to Chamber Variations of a Cylindrical Ionization Chamber for the Calibration of an $^{192}Ir$ Brachytherapy Source Based on an Absorbed Dose to Water Standards (물흡수선량 표준에 기반한 $^{192}Ir$ 근접치료 선원 교정 시 원통형 이온함의 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Chan-Hyeong;Min, Chul-Hee;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • This work is for the preliminary study for the calibration of an $^{192}Ir$ brachytherapy source based on an absorbed dose to water standards. In order to calibrate brachytherapy sources based on absorbed dose to water standards using a clyndirical ionization chamber, the beam quality correction factor $k_{Q,Q_0}$ is needed. In this study $k_{Q,Q_0}s$ were determined by both Monte carlo simulation and semiexperimental methods because of the realistic difficulties to use primary standards to measure an absolute dose at a specified distance. The 5 different serial numbers of the PTW30013 chamber type were selected for this study. While chamber to chamber variations ran up to maximum 4.0% with the generic $k^{gen}_{Q,Q_0}$, the chamber to chamber variations were within a maximum deviation of 0.5% with the individual $k^{ind}_{Q,Q_0}$. The results show why and how important ionization chambers must be calibrated individually for the calibration of $^{192}Ir$ brachytherapy sources based on absorbed dose to water standards. We hope that in the near future users will be able to calibrate the brachytherapy sources in terms of an absorbed dose to water, the quantity of interest in the treatment, instead of an air kerma strength just as the calibration in the high energy photon and electron beam.

  • PDF