• Title/Summary/Keyword: radiation response

Search Result 1,314, Processing Time 0.03 seconds

Characterization of the a-Se Film for Phosphor based X-ray light Modulator (형광체 기반 X선 광 변조기를 위한 비정질 셀레늄 필름 특성)

  • Kang, Sang-Sik;Park, Ji-Koon;Cho, Sung-Ho;Cha, Byung-Youl;Shin, Jung-Wook;Lee, Kun-Hwan;Mun, Chi-Woong;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.306-309
    • /
    • 2007
  • PXLM(Phosphor based x-ray light modulator) has a combined structure by phosphor, photoconductor, and liquid crystal and it can realize x-ray image of high resolution in clinical diagnosis area. In this study, we fabricated a photoconductor and investigated electrical and optical properties to confirm application possibility of radiator detector of PXLM structure. As photoconductor, amorphous selenium(a-Se), which is used most in DR(Digital radiography) of direct conversion method, was used and for formation of thin film, it was formed as $20{\mu}m-thick$ by using thermal vacuum evaporation system. For a produced a-Se film, through XRD(X-ray diffraction) and SEM(Scanning electron microscope), we investigated that amorphous structure was uniformly established and through optical measurement, for visible light of 40 $0\sim630nm$, it had absorption efficiency of 95 % and more. After fabricated a-Se film on the top of ITP substrate, hybrid structure was manufactured through forming $Gd_2O_3:Eu$ phosphor of $270{\mu}m-thick$ on the bottom of the substrate. As the result to confirm electrical property of the manufactured hybrid structure, in the case of appling $10V/{\mu}m$, leakage current of $2.5nA/cm^2$ and x-ray sensitivity of $7.31nC/cm^2/mR$ were investigated. Finally, we manufactured PXLM structure combined with hybrid structure and liquid crystal cell of TN(Twisted nematic) mode and then, investigated T-V(Transmission vs. voltage) curve of external light source for induced x-ray energy. PXLM structure showed a similar optical response with T-V curve that common TN mode liquid crystal cell showed according to electric field increase and in appling $50\sim100V$, it showed linear transmission efficiency of $12\sim18%$. This result suggested an application possibility of PXLM structure as radiation detector.

Effects of Different UV-B Levels on Growth, Antioxidant Contents and Activities of Related Enzymes in Cucumber(Cucumis sativus L.). (UV-B 강도 변화가 오이의 생장 및 항산화 물질 함량과 관련 효소의 활성에 미치는 영향)

  • Kim, Hak-Yoon;Shin, Dong-Hyun;Kim, Kil-Ung
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.309-313
    • /
    • 2000
  • To investigate the effects of different UV-B levels on growth and biochemical defense response in plants, cucumber plants were subjected to three levels of biologically effective ultraviolet-B $(UV-B_{BE})$ radiation [daily dose: 0.03 (No), 6.40 (Low) and $11.30\;(High)\;kJ{\cdot}m^{-2}$, $UV-B_{BE}$] in the growth chambers for 3 weeks during the early growth period. Enhanced UV-B radiation drastically decreased both dry weight and leaf area of cucumber. With increasing UV-B intensity, chlorophyll content was decreased, however the level of malondialdehyde was highly increased linearly. Total contents of ascorbic acid and glutathione were tended to increase by UV-B, while the ratios of dehydroascorbate/ascorbate and oxidized glutathione/reduced glutathione were significantly increased with increasing UV-B intensity in cucumber. All the enzyme activities investigated (superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, guaiacol peroxidase etc.) in cucumber were increased by the UV-B enhancement. These results suggested that enhanced UV-B irradiation caused photooxidative stress in cucumber plant and resulted in significant reduction in plant growth. Biochemical protection responses might be activated to prevent the leaves from damaging effects of oxidative stress generated by UV-B irradiation.

  • PDF

Effects of Climatic Condition on Stability and Efficiency of Crop Production (농업 기상특성과 작물생산의 효율 및 안전성)

  • Robert H. Shaw
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.296-313
    • /
    • 1982
  • At a time when world population and food supply are in a delicate balance, it is essential that we look at factors to improve this balance. We can alter the environment to better fit the plant's needs, or we can alter the plant to better fit the environment. Improved technology has allowed us to increase the yield level. For moderately detrimental weather events technology has generally decreased the yield variation, yet for major weather disasters the variation has increased. We have raised the upper level, but zero is still the bottom level. As we concentrate the production of particular crops into limited areas where the environment is closest to optimum, we may be increasing the risk of a major weather related disaster. We need to evaluate the degree of variability of different crops, and how weather and technology can interact to affect it. The natural limits of crop production are imposed by important ecological factors. Production is a function of the climate, the soil, and the crop and all activities related to them. In looking at the environment of a crop we must recognize these are individuals, populations and ecosystems. Under intensive agriculture we try to limit the competition to one desired species. The environment is made up of a complex of factors; radiation, moisture, temperature and wind, among others. Plant response to the environment is due to the interaction of all of these factors, yet in attempting to understand them we often examine each factor individually. Variation in crop yields is primarily a function of limiting environmental parameters. Various weather parameters will be discussed, with emphasis placed on how they impact on crop production. Although solar radiation is a driving force in crop production, it often shows little relationship to yield variation. Water may enter into crop production as both a limiting and excessive factor. The effects of moisture deficiency have received much more attention than moisture excess. In many areas of the world, a very significant portion of yield variation is due to variation in the moisture factor. Temperature imposes limits on where crops can be grown, and the type of crop that can be grown in an area. High temperature effects are often combined with deficient moisture effects. Cool temperatures determine the limits in which crops can be grown. Growing degree units, or heat accumulations, have often been used as a means of explaining many temperature effects. Methods for explaining chilling effects are more limited.

  • PDF

Effect of NaCl Treatment and Gamma Ray Irradiation on the Induction Pink Mutations in Hairs of Tradescantia Stamen (NaCl 처리와 감마선조사가 자주달개비 수술털 세포의 분홍돌연변이 유기에 미치는 영향)

  • Kim, Jin-Kyu;Kim, Won-Rok;Kim, Jae-Sung;Kim, Ki-Nam;Hong, Kwang-Phyo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • To investigate the combined effect of gamma ray irradiation and NaCl treatment on Tradescantia somatic cell pink mutations, potted plants of Tradescantia 4430 were evenly sprayed with NaCl solution(170mM) 24 hours before irradiation(NaCl+${\gamma}$) and after irradiation(${\gamma}$+NaCl). Irradiation doses were 0.3, 0.5, 1.0 and 2.0 Gy of gamma-ray. The plants irradiated only with gamma radiation were used as control group(CT). Frequency of pink mutation increased linearly with irradiation close and the peak interval of elevated mutation frequencies appeared during 6∼12 days aver irradiation in all the experimental groups. The slope of dose-response curve in CT was 5.99($r^2$=0.99), while it were 4.55($r^2$=0.98) in NaCl+${\gamma}$ and 4.33($r^2$=0.99) in ${\gamma}$+NaCl. It seemed that pre- and post-treatment of NaCl had a protective effect it against radiation-induced cell damages since it decreased the slope value by more than 24%. It is suggested that protective effect on DNA damages can be invoked in irradiated stamen hair cells by NaCl treatment.

  • PDF

Apoptotic Pathway Induced by Dominant Negative ATM Gene in CT-26 Colon Cancer Cells (CT-26 대장암 세포에서 Dominant Negative ATM 유전자에 의하여 유도되는 세포자멸사의 경로)

  • Lee, Jung Chang;Yi, Ho Keun;Kim, Sun Young;Lee, Dae Yeol;Hwang, Pyoung Han;Park, Jin Woo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.679-686
    • /
    • 2003
  • Purpose : Ataxia telangiectasia mutated(ATM) is involved in DNA damage responses at different cell cycle checkpoints, and signalling pathways associated with regulation of apoptosis in response to ionizing radiation(IR). However, the signaling pathway that underlies IR-induced apoptosis in ATM cells has remained unknown. The purpose of this study was, therefore, to investigate the apoptotic pathway that underlies IR-induced apoptosis in a CT-26 cells expressing dominant negative ATM (DN-ATM). Methods : We generated a replication-deficient recombinant adenovirus encoding the DN-ATM(Ad/DN-ATM) or control adenovirus encoding no transgene(Ad/GFP) and infected adenovirus to CT-26 cells. After infection, we examined apoptosis and apoptotic pathway by [$^3H$]-thymidine assay, DNA fragmentation, and Western immunoblot analysis. Results : DN-ATM gene served as the creation of AT phenotype in a CT-26 cells as revealed by decreased cell proliferations following IR. In addition, IR-induced apoptosis was regulated through the reduced levels of the anti-apoptotic protein Bcl-2, the increased levels of the apoptotic protein Bax, and the activation of caspase-9, caspase-3, and PARP. Conclusion : These results indicate that the pathway of IR-induced apoptosis in CT-26 cells expressing DN-ATM is mediated by mitochondrial signaling pathway involving the activation of caspase 9, caspase 3, and PARP.

The Roles of Gold Plate (140${\mu}{\textrm}{m}$) Loaded on TLD-100 Chips in the High Energy Radiation Beams (고에너지 광자선속에서 TLD-100 chip 위에 있는 금박막(140 ${\mu}{\textrm}{m}$) 역할)

  • Vahc, Young-Woo;Park, Kyung Ran.
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.51-60
    • /
    • 1995
  • Lithium Fluoride (LiF; TLD-100) crystal chips are normally used as thermolu minescence dosimeters (abbreviated as NC-100) for estimating the absorbed dose to the skin of a patient or in a solid water phantom undergoing radiotherapy with megavoltage photon (6 and 15MV) beams. In general, investigation has revealed a reduction in the sensitivity of NC-100 chips after many runs through heating cycles. A TLD-100 chip laminated with gold plate (140${\mu}{\textrm}{m}$) on the upper surface layer of its face toward the photon beam (abbreviated as GC-100) has properties different from that of a NC-100 chip activated by incident photons and contaminant electrons with various lower energies coming from the gantry head and air. Activation of the valence band electrons of GC-100 chips by incident photons, positrons and electrons-which come from the gold plate by mainly pair production process and partly from Compton scattering-results in more enhanced signal intensity, higher response per monitor unit, as well as a good linearity with monitor units and independence of dose rate. Since the electron beams (6 and 15 MeV) do not have the probability of pair production process with gold plate, there is only a small difference (about a 3.3% increase for 15 MeV) in the signal gaps in the TL readout for electron beams between GC- and NC-100 chips. The 3.3% increase is entirely due to the buildup caused by the 140 m gold plate. The sensitivity of GC-100 chips is much more susceptible to high energy photon beams than electron one because of pair production. The interaction of high energy photon with a material of high atomic number, such as the good plate in this case, results in a considerably significant probability of pair production. The gold plate on the NC-100 chips acts as not only an intensifier of their signals but also acts as a filter of contaminant electrons in therapeutic high energy X-ray beams.

  • PDF

Investigation of Response of Several Neutron Surveymeters by a DT Neutron Generator (DT 중성자 발생기에 의한 중성자 검출기 반응도 조사)

  • Kim, Sang-In;Jang, In-Su;Kim, Jang-Lyul;Lee, Jung-Il;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • Several neutron measuring devices were tested under the neutron fields characterized with two distinct kinds of thermal and fast neutron spectrum. These neutron fields were constructed by the mixing of both thermal neutron fields and fast neutron fields. The thermal neutron field was constructed using by a graphite pile with eight AmBe neutron sources. The fast neutron field of 14 MeV was made by a DT neutron generator. In order to change the fraction of fast neutron fluence rate in each neutron fields, a neutron generator was placed in the thermal neutron field at 50 cm and 150 cm from the reference position. The polyethylene neutron collimator was used to make moderated 14 MeV neutron field. These neutron spectra were measured by using a Bonner sphere system with an LiI scintillator, and dosimetric quantities delivered to neutron surveymeters were determined from these measurement results.

Assessment of Radionuclide Deposition on Korean Urban Residential Area

  • Lee, Joeun;Han, Moon Hee;Kim, Eun Han;Lee, Cheol Woo;Jeong, Hae Sun
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.101-107
    • /
    • 2020
  • Background: An important lesson learned from the Fukushima accident is that the transition to the mid- and long-term phases from the emergency-response phase requires less than a year, which is not very long. It is necessary to know how much radioactive material has been deposited in an urban area to establish mid- and long-term countermeasures after a radioactive accident. Therefore, an urban deposition model that can indicate the site-specific characteristics must be developed. Materials and Methods: In this study, the generalized urban deposition velocity and the subsequent variation in radionuclide contamination were estimated based on the characteristics of the Korean urban environment. Furthermore, the application of the obtained generalized deposition velocity in a hypothetical scenario was investigated. Results and Discussion: The generalized deposition velocities of 137Cs, 106Ru, and 131I for each residence type were obtained using three-dimensional (3D) modeling. For all residence types, the deposition velocities of 131I are greater than those of 106Ru and 137Cs. In addition, we calculated the generalized deposition velocities for each residential types. Iodine was the most deposited nuclide during initial deposition. However, the concentration of iodine in urban environment drastically decreases owing to its relatively shorter half-life than 106Ru and 137Cs. Furthermore, the amount of radioactive material deposited in nonresidential areas, especially in parks and schools, is more than that deposited in residential areas. Conclusion: In this study, the generalized urban deposition velocities and the subsequent deposition changes were estimated for the Korean urban environment. The 3D modeling was performed for each type of urban residential area, and the average deposition velocity was obtained and applied to a hypothetical accident. Based on the estimated deposition velocities, the decision-making systems can be improved for responding to radioactive contamination in urban areas. Furthermore, this study can be useful to predict the radiological dose in case of large-scale urban contamination and can support decision-making for long-term measurement after nuclear accident.

Analytical Consideration of Surface Dose and Kerma for Megavoltage Photon Beams in Clinical Radiation Therapy

  • Birgani, Mohammad Javad Tahmasebi;Behrooz, Mohammad Ali;Razmjoo, Sasan;Zabihzadeh, Mansour;Fatahiasl, Jafar;Maskni, Reza;Abdalvand, Neda;Asgarian, Zeynab;Shamsi, Azin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.153-157
    • /
    • 2016
  • Background: In radiation therapy, estimation of surface doses is clinically important. This study aimed to obtain an analytical relationship to determine the skin surface dose, kerma and the depth of maximum dose, with energies of 6 and 18 megavoltage (MV). Materials and Methods: To obtain the dose on the surface of skin, using the relationship between dose and kerma and solving differential equations governing the two quantities, a general relationship of dose changes relative to the depth was obtained. By dosimetry all the standard square fields of $5cm{\times}5cm$ to $40cm{\times}40cm$, an equation similar to response to differential equations of the dose and kerma were fitted on the measurements for any field size and energy. Applying two conditions: a) equality of the area under dose distribution and kerma changes in versus depth in 6 and 18 MV, b) equality of the kerma and dose at $x=d_{max}$ and using these results, coefficients of the obtained analytical relationship were determined. By putting the depth of zero in the relation, amount of PDD and kerma on the surface of the skin, could be obtained. Results: Using the MATLAB software, an exponential binomial function with R-Square >0.9953 was determined for any field size and depth in two energy modes 6 and 18MV, the surface PDD and kerma was obtained and both of them increase due to the increase of the field, but they reduce due to increased energy and from the obtained relation, depth of maximum dose can be determined. Conclusions: Using this analytical formula, one can find the skin surface dose, kerma and thickness of the buildup region.

Comparison of Three Different Induction Regimens for Nasopharyngeal Cancer

  • Kertmen, Neyran;Aksoy, Sercan;Cengiz, Mustafa;Yazici, Gozde;Keskin, Ozge;Babacan, Taner;Sarici, Furkan;Akin, Serkan;Altundag, Kadri;Gullu, H. Ibrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.59-63
    • /
    • 2015
  • Background: The standard treatment of local advanced nasopharyngeal cancer is chemoradiotherapy. There is a lack of data concerning induction therapy. In this study we retrospectively examined patients treated with induction therapy and chemoradiotherapy. Materials and Methods: Locally advanced nasopharyngeal cancer patients treated between 1996 and 2013 in our clinic were included in the study. Three different induction regimens were administered to our patients in different time periods. The regimen dosages were: CF regimen, cisplatin $50mg/m^2$ 1-2 days, fluorouracil $500mg/m^2$ 1-5 days; DC, docetaxel $75mg/m^2$ 1 day, cisplatin $75mg/m^2$ 1 day; and DCF, docetaxel $75mg/m^2$ 1 day, cisplatin $75mg/m^2$ 1 day, 5-Fu $750mg/m^2$ 1-5 days. Most of the patients were stage III (36.4%) and stage IV (51.7%). Results: Median follow-up time was 50 months (2-201 months). Three-year progression-free survival (PFS) was 79.3%, and 5-year PFS 72.4% in all patients. Three-year overall survival (OS) was 87.4% and 5-year OS 76% in all patients. In terms of induction therapies, 3-year OS was 96.5% in the DCF group, 86.6% in the DC group and 76.3% in the CF group (p=0.03). Conclusions: There was no significant differences in response rate and PFS between the three regimens. OS in the DCF group was significantly higher than in the other groups. However, this study was retrospective and limited toxicity data were available; the findings therefore need to be interpreted with care.