• 제목/요약/키워드: radiation management

검색결과 1,063건 처리시간 0.024초

진단용 방사선 안전관련 법령의 법체계상 문제점 (Problems of the Legal System Related to the Regulation of Radiation Safety for Diagnosis)

  • 임창선;문홍안
    • 의료법학
    • /
    • 제14권2호
    • /
    • pp.119-142
    • /
    • 2013
  • It is not easy to regulate the amount of radiation used for the medical purpose as there usually is more good than harm to the patient's health and life caused by the medical exposure to the radiation. However, the rapid increase of the use of diagnostic radiation involves a high possibility of increasing the radiation hazard exposure. Therefore, it is imperative to implement effective regulations in order to secure the safety of diagnostic radiation. The one and only rule we currently have for the diagnostic radiation is "Medicine Act" with only one clause dedicated to regulate the safety management that does not include any rules for the medical radiation. A set of inclusive rules for the whole medical radiation inclusive of diagnostic radiation and therapeutic radiation need to be based on the "Medicine Act" rather than "Nuclear Safety Act" in order to protect the medical professionals, patients and the guardians of patients from the hazards of diagnostic and/or therapeutic radiation that was not used the purpose of medical treatment. If there is an administrative measure to be imposed to secure the safety of diagnostic radiation, it is considered as exertion of governmental authority of administrative agency. There must be clear and realistic legal guidelines for in-fringe on people's interests. The administrative measures for the safety management of the diagnostic radiation must be clearly and specifically based on the law and the detailed standards for the administrative measures must be dele-gated by the presidential decree or departmental ordinance. Accordingly, the restrictions imposed by the administrative measures to the "Safety Inspection Institute of Radiation along with Radiation Exposure Measuring Institutes" should have clear legal basis as well and the detailed standards for the administrative measures should be regulated by the Ministry of Health and Welfare decree instead of the notification by the Director of Korean Centers for Disease Control and Prevention. While securing the safety of radiation on one side, careful review and up-grade on our legal system for the safety management of the diagnostic radiation is required on the other side to guarantee the legality, interest balance and reliability of the administrative measures.

  • PDF

Review of Shielding Evaluation Methodology for Facilities Using kV Energy Radiation Generating Devices Based on the NCRP-49 Report

  • Na Hye Kwon;Hye Sung Park;Taehwan Kim;Sang Rok Kim;Kum Bae Kim;Jin Sung Kim;Sang Hyoun Choi;Dong Wook Kim
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.53-62
    • /
    • 2022
  • In this study, we have investigated the shielding evaluation methodology for facilities using kV energy generators. We have collected and analysis of safety evaluation criteria and methodology for overseas facilities using radiation generators. And we investigated the current status of shielding evaluation of domestic industrial radiation generators. According to the statistical data from the Radiation Safety Information System, as of 2022, a total of 7,679 organizations are using radiation generating devices. Among them, 6,299 facilities use these devices for industrial purposes, which accounts for a considerable portion of radiation. The organizations that use these devices evaluate whether the exposure dose for workers and frequent visitors is suitable as per the limit regulated by the Nuclear Safety Act. Moreover, during this process, the safety shields are evaluated at the facilities that use the radiation generating devices. However, the facilities that use radiating devices having energy less than or equal to 6 MV for industrial purposes are still mostly evaluated and analyzed according to the National Council on Radiation Protection and Measurements 49 (NCRP 49) report published in 1976. We have investigated the technical standards of safety management, including the maximum permissible dose and parameters assessment criteria for facilities using radiation generating devices, based on the NCRP 49 and the American National Standards Institute/Health Physics Society N.43.3 reports, which are the representative reports related to radiation shielding management cases overseas.

PET-CT의 방사선안전관리 가이드라인 개발: 행위와 환경을 중심으로 (Radiation Safety Management Guidelines for PET-CT: Focus on Behavior and Environment)

  • 정진욱;한은옥
    • Journal of Radiation Protection and Research
    • /
    • 제36권3호
    • /
    • pp.140-147
    • /
    • 2011
  • PET-CT 사용에 따른 피폭선량을 감소시키기 위한 행위적, 환경적 요인을 구체화하여 국내 실정에 맞는 방사선안전관리에 대한 가이드라인을 개발하고자 하였다. 연구방법론적 설계는 질적조사와 양적조사를 병행한 다단계-다방법론적 접근으로 선행연구 분석, 전문가 자문, 설문조사를 수행하였다. 분석대상은 대한핵의학회(2010년) 기준, 국내 설치된 109대 PET-CT 담당 방사선종사자의 응답지 139부이다. 연구도구는 설문지이고 크론바하 알파(Cronbach's ${\alpha}$)계수는 "방사선방어 환경구비 및 설치의 필요성" 0.818, "방사선방어 행위의 필요성" 0.916, "방사선방어 환경구비 및 설치수준" 0.722, "방사선방어 행위수준" 0.885로 모두 높게 나타났다. 환경 및 행위 중심의 방사선안전관리 가이드라인으로 도출된 점검항목은 방사선방어 환경점검으로 환자 5항목, 보호자 4항목, 방사선사 3항목, 공통적으로 적용되는 8항목으로 총 20항목이 구성되었고, 방사선방어 행위점검으로 환자 12항목, 보호자 1항목, 방사선사 7항목, 공통적으로 적용되는 6항목으로 총 26항목으로 구성되었다. 구체적인 점검목록은 <표 5-6>에 나타나 있다. 국내에서는 PET-CT사용에 따른 방사선피폭을 감소하기 위한 자체적인 안전관리 가이드라인이 부재한 상태이므로 본 연구에서 개발된 가이드라인은 국내 실정에 맞고 개입이 가능한 환경과 행위측면에 대해 각 피폭 대상별로 구체적인 점검내용으로 구성한 것에 의의가 있다고 본다.

The Japan Health Physics Society Guideline on Dose Monitoring for the Lens of the Eye

  • Yokoyama, Sumi;Tsujimura, Norio;Hashimoto, Makoto;Yoshitomi, Hiroshi;Kato, Masahiro;Kurosawa, Tadahiro;Tatsuzaki, Hideo;Sekiguchi, Hiroshi;Koguchi, Yasuhiro;Ono, Koji;Akiyoshi, Masahumi;Kunugita, Naoki;Natsuhori, Masahiro;Natsume, Yoshinori;Nabatame, Kuniaki;Kawashima, Tsunenori;Takagi, Shunji;Ohno, Kazuko;Iwai, Satoshi
    • Journal of Radiation Protection and Research
    • /
    • 제47권1호
    • /
    • pp.1-7
    • /
    • 2022
  • Background: In Japan, new regulations that revise the dose limit for the lens of the eye (hereafter the lens), operational quantities, and measurement positions for the lens dose were enforced in April 2021. Based on the international safety standards, national guidelines, the results of the Radiation Safety Research Promotion Fund of the Nuclear Regulation Authority, and other studies, the Working Group of Radiation Protection Standardization Committee, the Japan Health Physics Society (JHPS) developed a guideline for radiation dose monitoring for the lens. Materials and Methods: The Working Group of the JHPS discussed the criteria of non-uniform exposure and the management criteria set not to exceed the dose limit for the lens. Results and Discussion: In July 2020, the JHPS guideline was published. The guideline consists of three parts: main text, explanations, and 26 examples. In the questions, the corresponding answers were prepared, and specific examples were provided to enable similar cases to be addressed. Conclusion: With the development of the guideline on radiation dose monitoring of the lens, radiation managers and workers will be able to smoothly comply with revised regulations and optimize radiation protection.

Radioactive Waste Management System of ARTI

  • Lee, Hyun-Jin;Kim, Chong-Yeal;Lee, Jin-Woo;Jeong, Gyo-Seong;Lee, Sang-Bong
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2019년도 춘계학술논문요약집
    • /
    • pp.365-366
    • /
    • 2019
  • PDF

진단용 방사선발생장치의 검사기준을 적용한 동물병원의 방사선 안전관리 (The Radiation Safety Management in the Animal Hospital Using Inspection Standard of Diagnosis Radiation System)

  • 김상우;임재동;한동균;성열훈
    • 대한안전경영과학회지
    • /
    • 제12권4호
    • /
    • pp.73-80
    • /
    • 2010
  • The purpose of this study was to investigate the actual conditions of radiation safety supervision in animal clinics using inspection standard of X-ray generator for diagnosis. The surveys for inspection standard system, equipment condition, and safety supervision were carried out in 18 animal clinics randomly. The inspection standard included reproducibility of dose exposure, kVp, mAs, collimator accuracy test, collimator luminance test, X-ray view box luminance test, grounding system equipment test and external leakage current test. The surveys of equipment condition and safety supervision used one-on-one interview with 5 points measurement. As a result, 44.44% of reproducibility of dose exposure was proper, 81.25% of kVp test was good, and 100% of mAs test was appropriate. Also, 66.66% of collimator accuracy test was proper, 61.11% of collimator luminance test was good, 53.13% of X-ray view box luminance test was suitable. In addition, only 5.55% of grounding system equipment and ground resistance was proper, 63.64% of external leakage current test was appropriate in grounding system equipment test. The 100mA electric capacity of X-ray generator for diagnosis was popular with 44.44%, and its 55.56% was purchased used equipment. Monthly average of less than 50 times (61.11%) was top frequency in use, and no animal clinic had a thermo-luminescence dosimeter(TLD). The 16 animal clinics with radiation safety zone and 2 without radiation safety zone were appeared.

진단용 방사선발생장치 이용에 적용되는 법제의 비교 (Comparison of the Legislation Applicable to Compare the use of Diagnostic Radiation Devices)

  • 고종경;전여령;한은옥;조평곤;김용민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제38권3호
    • /
    • pp.277-286
    • /
    • 2015
  • 국내에 사용되고 있는 진단용 방사선발생장치는 78,000여대에 이르고 있다. 인체 대상의 진단 목적으로 사용할 때에는 의료법의 적용을 받고, 동물 대상의 진단 목적으로 사용할 때는 수의사법의 적용을 받는다. 그 이외의 목적으로 사용 시에는 원자력안전법의 적용을 받는다. 동일한 방사선발생장치라도 사용목적 및 대상에 따라 적용되는 법제가 달라지며, 다원화된 규정이 적용되는 문제점인 법제의 혼란을 방지하기 위해 법제 내용의 분석 및 비교가 필요하다. 본 연구는 질적 조사로, 원자력안전 법, 의료법, 수의사법과 그 하위 규정에 적용되는 진단용 방사선발생장치 도입에 대한 행정절차, 안전성 검사, 인력 관리, 구역 관리, 행정처분에 관한 내용이다. 원자력안전법 하위규정에서는 진단용 방사선발생장치 도입은 허가개념으로 행정절차가 복잡하고 구비요건이 많다. 사용에 따른 안전성 검사는 방사선안전관리 전 분야에 걸쳐 감사 성격의 정기검사를 받게 된다. 안전관리자 및 종사자에 대해 해마다 법정 정기 교육을 받아야 한다. 방사선관리구역을 지정하는 방사선량률 기준이 다르며 방사선량률 측정 의무가 있다. 법제 위반 시 부과되는 행정처분의 양적 차이가 최대 10배에 이르며 전 분야에 걸쳐 원자력안전법 하위규정 적용 시 방사선안전관리 부담이 가장 크다. 동일한 진단용 방사선발생장치의 사용 목적과 촬영대상에 따라 다르게 적용되고 있는 현행 법 제도 하에서는 사용주체에 따라 방사선 안전관리를 위한 법제 내용의 형평성이 결여되어 있고, 혼란의 우려가 있으므로 진단용 방사선발생장치 이용에 따른 법제의 일원화 또는 표준화 등의 대안이 필요할 것으로 예상된다.

전산화단층촬영 검사 시 인체에 미치는 방사선피폭선량 분석연구 (Study of radiation exposure on human body using of Computed Tomography)

  • 선종률;유세종
    • 대한안전경영과학회지
    • /
    • 제17권4호
    • /
    • pp.193-198
    • /
    • 2015
  • This study analyzed the total number of 19,636 patients and radiation technologists, 11,433 of male and 8,203 of female by examined body parts, age, types of detectors, the using contrast enhancement and working condition of the technologists, regular staffs or rotation-duty staffs, based on the K-DOS program distributed by FDA with the DLP value of diagnostic evaluation. The result shows that the effective radiation dose was 0.7mSv~41.7mSv for each region and male patients had more radiation exposure than females. And the amount of exposure was also affected by the types and the method of detectors. Furthermore, the regular staffs took the role of helping the patient to get reduced amount of radiation exposure than rotation duty-staffs. Computed tomography (CT) use has increased dramatically over the past several decades. In this reason, to support the patients and the workers' health in the field, the hospitals should apply specialized regular working radiation technologist system and manufacturing companies of those CTs should develop low medical radiation exposure devices.

The first KREDOS-EPR intercomparison exercise using alanine pellet dosimeter in South Korea

  • Park, Byeong Ryong;Kim, Jae Seok;Yoo, Jaeryong;Ha, Wi-Ho;Jang, Seongjae;Kang, Yeong-Rok;Kim, HyoJin;Jang, Han-Ki;Han, Ki-Tek;Min, Jeho;Choi, Hoon;Kim, Jeongin;Lee, Jungil;Kim, Hyoungtaek;Kim, Jang-Lyul
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2379-2386
    • /
    • 2020
  • This paper presents the results of the first intercomparison exercise performed by the Korea retrospective dosimetry (KREDOS) working group using electron paramagnetic resonance (EPR) spectroscopy. The intercomparison employed the alanine dosimeter, which is commonly used as the standard dosimeter in EPR methods. Four laboratories participated in the dose assessment of blind samples, and one laboratory carried out irradiation of blind samples. Two types of alanine dosimeters (Bruker and Magnettech) with different geometries were used. Both dosimeters were blindly irradiated at three dose levels (0.60, 2.70, and 8.00 Gy) and four samples per dose were distributed to the participating laboratories. Assessments of blind doses by the laboratories were performed using their own measurement protocols. One laboratory did not participate in the measurements of Magnettech alanine dosimeter samples. Intercomparison results were analyzed by calculating the relative bias, En value, and z-score. The results reported by participating laboratories were overall satisfactory for doses of 2.70 and 8.00 Gy but were considerably overestimated with a relative bias range of 10-95% for 0.60 Gy, which is lower than the minimum detectable dose (MDD) of the alanine dosimeter. After the first intercomparison, participating laboratories are working to improve their alanine-EPR dosimetry systems through continuous meetings and are preparing a second intercomparison exercise for other materials.