• Title/Summary/Keyword: radiation exposure of radiation worker

Search Result 111, Processing Time 0.026 seconds

Tailored Sun Safety Messages for Outdoor Workers

  • Sajjad S. Fazel;Shelby Fenton;Nicole Braun;Lindsay Forsman-Phillips;D. Linn Holness;Sunil Kalia;Victoria H. Arrandale;Thomas Tenkate;Cheryl E. Peters
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • Background: Messaging surrounding skin cancer prevention has previously focused on the general public and emphasized how or when activities should be undertaken to reduce solar ultraviolet radiation (UVR) exposure. Generic messages may not be applicable to all settings, and should be tailored to protect unique and/or highly susceptible subpopulations, such as outdoor workers. The primary objective of this study was to develop a set of tailored, practical, harm-reducing sun safety messages that will better support outdoor workers and their employers in reducing the risk of solar UVR exposure and UVR-related occupational illnesses. Methods: We adapted a core set of sun safety messages previously developed for the general population to be more applicable and actionable by outdoor workers and their employers. This study used an integrated knowledge translation approach and a modified Delphi method (which uses a survey-based consensus process) to tailor the established set of sun safety messages for use for outdoor worker populations. Results: The tailored messages were created with a consideration for what is feasible for outdoor workers, and provide users with key facts, recommendations, and tips related to preventing skin cancer, eye damage, and heat stress, specifically when working outdoors. Conclusion: The resulting tailored messages are a set of evidence-based, expert- approved, and stakeholder-workshopped messages that can be used in a variety of work settings as part of an exposure control plan for employers with outdoor workers.

Suggestion of Efficient High Dose Spent Filter Handling and Compaction Equipment

  • Lee, Kyungho;Chung, Sewon;Park, Seonghee;Kim, HuiGyeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.243-253
    • /
    • 2022
  • Spent filters with a high radiation dose rate of 2 mSv·hr-1 or more are not easily managed. So far, the Korean policy for spent filter disposal is to store them temporarily at nuclear power plants until the waste filters can be easily managed. Nuclear power plant decommissioning in Korea is starting with Kori unit 1. Volume reduction of waste generated during decommissioning can reduce the cost and optimize the space usage at disposal site. Therefore, efficient volume reduction is a very important factor during the decommissioning process. A conceptual method, based on the experiences of developing 200 and 800 ton compactors at Orion EnC, has been developed considering worker exposure with the followings a crusher (upgrade of compaction efficiency), an automatic dose measuring system with a NaI(Tl) detector, a shield box, an inner drum to prepare for easy handling of drums and packaging, a 30 ton compactor, and an automatic robot system. This system achieves a volume reduction ratio of up to 85.7%; hence, the system can reduce the disposal cost and waste volume. It can be applied to other types of wastes that are not easily managed due to high dose rates and remote control operation necessity.

Radiological safety analysis of a newly designed spent resin mixture treatment facility during normal and abnormal operational scenarios for the safety of radiation workers

  • Jaehoon Byun;Seungbin Yoon;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1935-1945
    • /
    • 2023
  • The radiological safety of workers in a newly developed microwave-based spent resin treatment facility was assessed based on work location and operational scenarios. The results show that the remote-operation room worker was exposed to maximum annual dose of 3.19E+00 mSv, which is 15.9% of the dose limit, thereby confirming radiological safety. Inside the pathway, annual doses in the range of 7.87E-02-2.07E-01 mSv were measured initially at the mock-up tank and later at the point between the spent resin separation and treatment parts. The dose of emergency maintenance workers was below the dose limit (4.08E-03-4.99E+00 mSv); however, before treatment (separation and microwave), the dose of maintenance and repair workers exceeded the dose limit. The doses of the effluent removal workers at the zeolite and activated carbon storage tank and spent resin storage tank were the lowest at 2.79E-01-2.87E-01 mSv and 9.27E-01 mSv in "1 h" and "4-5 h of operation", respectively. The immediately lower and upper layers of the facility room exhibited the highest annual doses of 1.84E+00 and 3.22E+00 mSv, respectively. Through this study, a scenario that can minimize the dose considering the movement of spent resin through the facility can be developed.

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF

A Comparative Study on Effective One-Group Cross-Sections of ORIGEN and FISPACT to Calculate Nuclide Inventory for Decommissioning Nuclear Power Plant

  • Cha, Gilyong;Kim, Soonyoung;Lee, Minhye;Kim, Minchul;Kim, Hyunmin
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.99-106
    • /
    • 2022
  • Background: The radionuclide inventory calculation codes such as ORIGEN and FISPACT collapse neutron reaction libraries with energy spectra and generate an effective one-group cross-section. Since the nuclear cross-section data, energy group (g) structure, and other input details used by the two codes are different, there may be differences in each code's activation inventory calculation results. In this study, the calculation results of neutron-induced activation inventory using ORIGEN and FISPACT were compared and analyzed regarding radioactive waste classification and worker exposure during nuclear decommissioning. Materials and Methods: Two neutron spectra were used to obtain the comparison results: Watt fission spectrum and thermalized energy spectrum. The effective one-group cross-sections were generated for each type of energy group structure provided in ORIGEN and FISPACT. Then, the effective one-group cross-sections were analyzed by focusing on 59Ni, 63Ni, 94Nb, 60Co, 152Eu, and 154Eu, which are the main radionuclides of stainless steel, carbon steel, zircalloy, and concrete for decommissioning nuclear power plant (NPP). Results and Discussion: As a result of the analysis, 154Eu and 59Ni may be overestimated or underestimated depending on the code selection by up to 30%, because the cross-section library used for each code is different. When ORIGEN-44g, -49g, and -238g structures are selected, the differences of the calculation results of effective one-group cross-section according to group structure selection were less than 1% for the six nuclides applied in this study, and when FISPACT-69g, -172g, and -315g were applied, the difference was less than 1%, too. Conclusion: ORIGEN and FISPACT codes can be applied to activation calculations with their own built-in energy group structures for decommissioning NPP. Since the differences in calculation results may occur depending on the selection of codes and energy group structures, it is appropriate to properly select the energy group structure according to the accuracy required in the calculation and the characteristics of the problem.

PAUT-based defect detection method for submarine pressure hulls

  • Jung, Min-jae;Park, Byeong-cheol;Bae, Jeong-hoon;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.153-169
    • /
    • 2018
  • A submarine has a pressure hull that can withstand high hydraulic pressure and therefore, requires the use of highly advanced shipbuilding technology. When producing a pressure hull, periodic inspection, repair, and maintenance are conducted to maintain its soundness. Of the maintenance methods, Non-Destructive Testing (NDT) is the most effective, because it does not damage the target but sustains its original form and function while inspecting internal and external defects. The NDT process to detect defects in the welded parts of the submarine is applied through Magnetic particle Testing (MT) to detect surface defects and Ultrasonic Testing (UT) and Radiography Testing (RT) to detect internal defects. In comparison with RT, UT encounters difficulties in distinguishing the types of defects, can yield different results depending on the skills of the inspector, and stores no inspection record. At the same time, the use of RT gives rise to issues related to worker safety due to radiation exposure. RT is also difficult to apply from the perspectives of the manufacturing of the submarine and economic feasibility. Therefore, in this study, the Phased Array Ultrasonic Testing (PAUT) method was applied to propose an inspection method that can address the above disadvantages by designing a probe to enhance the precision of detection of hull defects and the reliability of calculations of defect size.

Fabrication of Fiber-optics Detector for Measuring Radioactive Waste (방사성 오염도 측정을 위한 광섬유 검출기 제작)

  • Kim, Jeong-Ho;Joo, Koan-Sik
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.282-287
    • /
    • 2015
  • In this study, an optical fiber detector was constructed by using a Ce:GAGG scintillator, optical fiber, and photomultiplier. The single crystal size of the scintillator was set to $3{\times}3{\times}20mm^3$ after simulating the counting efficiency of gamma rays in the scintillator by using the MCNPX code. The constructed detector used the standard gamma ray sources $^{137}Cs$ and $^{133}Ba$ to measure radiation and analyze the spectral characteristics of gamma rays. The resulting trend curve showed excellent linearity with an R-squared value of 0.99741, and the detector characteristics were found to vary 2% or less with distance based on comparison with the MCNPX value. Furthermore, the spectroscopic analysis of the gamma ray energy from the single-ray and mixed-ray sources showed that $^{137}Cs$ had its peak energy at 662 keV, and $^{133}Ba$ had at 356 keV. It seems that if the fiber-optics detector is used, working hours and exposure of worker can be reduced.

A Consideration of Apron's Shielding in Nuclear Medicine Working Environment (PET검사 작업환경에 있어서 APRON의 방어에 대한 고찰)

  • Lee, Seong-wook;Kim, Seung-hyun;Ji, Bong-geun;Lee, Dong-wook;Kim, Jeong-soo;Kim, Gyeong-mok;Jang, Young-do;Bang, Chan-seok;Baek, Jong-hoon;Lee, In-soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.110-114
    • /
    • 2014
  • Purpose: The advancement in PET/CT test devices has decreased the test time and popularized the test, and PET/CT tests have continuously increased. However, this increases the exposure dose of radiation workers, too. This study aims to measure the radiation shielding rate of $^{18}F-FDG$ with a strong energy and the shielding effect when worker wore an apron during the PET/CT test. Also, this study compared the shielding rate with $^{99m}TC$ to minimize the exposure dose of radiation workers. Materials and Methods: This study targeted 10 patients who visited in this hospital for the PET/CT test for 8 days from May 2nd to 10th 2013, and the $^{18}F-FDG$ distribution room, patient relaxing room (stand by room after $^{18}F-FDG$ injection) and PET/CT test room were chosen as measuring spots. Then, the changes in the dose rate were measured before and after the application of the APRON. For an accurate measurement, the distance from patients or sources was fixed at 1M. Also, the same method applied to $^{99m}TC's$ Source in order to compare the reduction in the dose by the Apron. Results: 1) When there was only L-block in the $^{18}F-FDG$ distribution room, the average dose rate was $0.32{\mu}Sv$, and in the case of L-blockK+ apron, it was $0.23{\mu}Sv$. The differences in the dose and dose rate between the two cases were respectively, $0.09{\mu}Sv$ and 26%. 2) When there was no apron in the relaxing room, the average dose rate was $33.1{\mu}Sv$, and when there was an apron, it was $22.3{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $10.8{\mu}Sv$ and 33%. 3) When there was no APRON in the PET/CT room, the average dose rate was $6.9{\mu}Sv$, and there was an APRON, it was $5.5{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $1.4{\mu}Sv$ and 25%. 4) When there was no apron, the average dose rate of $^{99m}TC$ was $23.7{\mu}Sv$, and when there was an apron, it was $5.5{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $18.2{\mu}Sv$ and 77%. Conclusion: According to the result of the experiment, $^{99m}TC$ injected into patients showed an average shielding rate of 77%, and $^{18F}FDG$ showed a relatively low shielding rate of 27%. When comparing the sources only, $^{18F}FDG$ showed a shielding rate of 17%, and $^{99m}TC$'s was 77%. Though it had a lower shielding effect than $^{99m}TC$, $^{18}F-FDG$ also had a shielding effect on the apron. Therefore, it is considered that wearing an apron appropriate for high energy like $^{18}F-FDG$ would minimize the exposure dose of radiation workers.

  • PDF

An Effective Block of Radioactive Gases for the Storage During the Synthesis of Radiopharmaceutical (방사성의약품 합성에서 발생하는 방사성기체의 효율적 차단)

  • Chi, Yong Gi;Kim, Dong Il;Kim, Si Hwal;Won, Moon Hee;Choe, Seong-Uk;Choi, Choon Ki;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 2012
  • Purpose : Methode an effective block was investigated to deal with volatile radioactive gas, short lived radioactive waste generated as a result of the routinely produced radiopharmaceuticals FDG (2-deoxy-2-[$^{18}F$]fluoro-D-glucose) and compound with $^{11}C$. Materials and Methods : All components of the radiation stack monitoring and data management system for continuous radioactive gas detection in the air extract system purchase from fixed noble gas monitor of Berthold company. TEDLAR gas sampling bags purchase from the Dongbanghitech company. TEDLAR gas sampling bags (volume: 10 L) connected via paraflex or PTFE tubing and Teflon 3 way stopcock. When installing TEDLAR gas sampling bags in Hot cell on the inside and not radioactive gas concentrations were compared. According to whether the Hot cell inside a activated carbon filter installed, compare the difference in concentration of the radioactive gas $^{18}F$. Comparison of radiation emission concentration difference of module a FASTlab and TRACElab. Results : Activated carbon filter are installed in the Hot cell, a measure of the concentration of radioactive gas was 8 $Bq/m^3$. Without activated carbone filter in the hot cell was 300 $Bq/m^3$. Tedlar bag prior to installation of the radioactive gases a measure of the concentration was 3,500 $Bq/m^3$, $^{11}C$ synthesis of the measured concentration was 27,000 $Bq/m^3$. After installed a Tedlar bag and a measure concentration of the radioactive gases was 300 $Bq/m^3$ and $^{11}C$ synthesis was 1,000$Bq/m^3$. Conclusion : $^{11}C$ radioactive gas that was ejected out of the Hot cell, with the use of a Tedlar gas sampling bag stored inside. A compound of 11C is not absorbed onto activated carbon filter. But can block the release out by storing in a Tedlar gas sampling bag. We was able to reduce the radiation exposure of the worker by efficient radiation protection.

  • PDF

Comparison on the Dosimetry of TLD and PLD by Dose Area Product (DAP(Dose Area Product)를 이용한 TLD와 PLD의 선량 측정 비교)

  • Choi, Jae-Ho;Kang, Gu-Jun;Chang, Seo-Goo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2012
  • The results of analyzing the difference between performances of individual dosimeters on this research subjecting the PLD and TLD, which are the official personal dosimeters, through dosimetry are as follows. After scanning the integral dose using an automatic scanner, the values of two devices that went through dose adjustment process had a statistical difference in TLD and PLD measurements under each filming conditions which were 70kVp, 200mA, 0.012sec and 42kVp, 100mA, and 0.012sec (p<0.001 and p<0.001 respectively). As for the difference of measurement value between DAP and the two particles under 70kVp, 200mA, 0.012sec filming condition, TLD had a value lower than DAP average value by $44.2mGy{\cdot}cm^2$ and PLD had a value of $246.8mGy{\cdot}cm^2$ which was lower than DAP average value by $15.5mGy{\cdot}cm^2$, while under 42kVp, 100mA, 0.012sec filming condition, TLD had a value lower than DAP average value by $17.9mGy{\cdot}cm^2$ and PLD had a value of $82.6mGy{\cdot}cm^2$ which was lower than DAP average value by 7.6$mGy{\cdot}cm^2$. Also, compared to PLD, each of 10 devices measured dose value in TLD had a larger deviation between the particles, and for a reproducibility test which repeatedly measured one particle, PLD had ${\pm}1%$ which was lower than TLD's ${\pm}2%$. As such, PLD had a superior performance result in dose measurement capacities aspect compared to TLD, and therefore we could verify that PLD is more appropriate and advantageous in managing radiation-related task performing worker's personal radiation exposure management in the diagnostic radiation field.