• Title/Summary/Keyword: radiation concentration

Search Result 1,018, Processing Time 0.032 seconds

A STUDY ON THE RADIOSENSITIVITY AND CHEMOSENSITIVITY OF A-253 CELL LINE IN VITRO (시험관내 A-253 세포주의 방사선 및 항암제 감수성에 관한 연구)

  • Lee Joo-Hyun;Hwang Eui-Hwan;Lee Sang-Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.27 no.2
    • /
    • pp.91-103
    • /
    • 1997
  • The purpose of this study was to aid in the prediction of tumor cell tolerance to radiotherapy and/or chemotherapy. For this study, cell surviving curves were obtained for human epidermoid carcinoma A-253 cell line using semiautomated MTT assay. 2,4,6,8,10 Gy were irradiated at a dose rate of 210 cGy/min using /sup 60/Co Irradiator ALDORADO 8. After irradiation, A-253 cell lines(2×10⁴cells/mil were exposed to bleomycin or cisplatin for 1 hour. The viable cells were determined for each radiation dose with/without 2 /lg/mi of drug at the 3rd day. And they were compared to control values. The results were obtained as follows : 1. The surviving curve with gentle slope was obtained after irradiation of 2, 4, 6, 8, 10 Gy on A-253 cell line. 2. The cytotoxicity of bleomycin or cisplatin at the concentration of 2㎍/ml was great on A-253 cell line. But, there was no significant difference between the cytotoxicity of bleomycin and that of cisplatin. 3. There were significant differences of surviving fractions after irradiation with 2㎍/mi of bleomycin compared with irradiation only on A-253 cell line. 4. There were significant differences of surviving fractions after irradiation with 2㎍/ml of cisplatin compared with irradiation only on A-253 cell line. 5. There were no significant differences of surviving fractions between the groups of irradiation with bleomycin and the groups of irradiation with cisplatin on A-253 cell line.

  • PDF

The Comparative Immunomodulatory Effects of β-Glucans from Yeast, Bacteria, and Mushroom on the Function of Macrophages

  • Jang, Seon-A;Park, Sul-Kyoung;Lim, Jung-Dae;Kang, Se-Chan;Yang, Kwang-Hee;Pyo, Suh-Kneung;Sohn, Eun-Hwa
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • The comparative immunomodulatory effects of ${\beta}$-glucans isolated from mushroom fungi (Coriolus versicol), yeast (Saccharomyces cerevisiae) and bacteria (Agrobacterium) on the major functions of macrophages were evaluated. As parameters of macrophage functions, we examined tumoricidal activity, phagocytosis, nitric oxide (NO) production, and the induction of inducible NO synthetase (iNOS) in RAW264.7 cells, following treatments with ${\beta}$-glucans from the three different sources. The results indicated that all ${\beta}$-glucan treatments significantly induced tumoricidal activity in the RAW264.7 cells, with a remarkable effect shown by the beta-glucan from Agrobacterium at a concentration of $10{\mu}g/mL$. There was also a significant increase in iNOS-NO system activity in macrophages treated with ${\beta}$-glucans extracted from yeast; however, iNOS-NO system activity was not markedly changed by the treatment of ${\beta}$-glucans from C. versicolor mushroom fungi or Agrobacterium. Furthermore, the ${\beta}$-glucans from C. versicolor had a significant phagocytotic effect at concentrations of 1, 10, and $100{\mu}g/mL$. Taken together, the present data suggest that these ${\beta}$-glucans, isolated from three different sources, have different effects on macrophage function, and therefore, may have different clinical uses in different for various types of diseases.

Study on the Measurement of Radon concentrations in soil samples using γ-spectrometer (γ-spectrometer를 이용한 토양시료의 라돈농도 측정법에 관한 연구)

  • Kang, Sunga;Lee, Sangsoo;Choi, Guirack;Lee, Junhaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • The radioactive gas radon ($^{222}Rn$), which is generated from the decay process of uranium ($^{238}U$) originating from the soil of more than 85 percent higher the porosity of the soil, the soil can radiate out the possibility that many isotopes. In order to protect the human body from radon, above all, the development of accurate measurement techniques to formulate appropriate measures should be followed. This study Gamma-ray spectrometry using a high purity germanium (HPGe) detector, if you want to measure radon unstable the nature radiation of the background problems can be reduced, radium and radon daughter nuclides after radioactive equilibrium leads to Radon concentration was measured, the soil samples from the Gamma-ray emitting nuclides, and the energy spectrum is analyzed.

Effect of Nitrite and Nitrate as the Source of OH Radical in the O3/UV Process with or without Benzene

  • Son, Hyun-Seok;Ahammad, A.J. Saleh;Rahman, Md. Mahbubur;Noh, Kwang-Mo;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3039-3044
    • /
    • 2011
  • This study suggests the prediction model for the concentration variation of $NO_2{^-}$ and $NO_3{^-}$ along with the rate constants of all reactions during ozonation under UV radiation ($O_3$/UV process). While $NO_2{^-}$ was completely converted into $NO_3{^-}$ during the $O_3$-only process, the production of $NO_2$ radical or $N_2O_4$ was expected in the $O_3$/UV process. In addition, the quenching of OH radicals, by $NO_2$ radical in the $O_3$/UV process, resulted in regeneration of $NO_2{^-}$. However, the regeneration of $NO_2{^-}$ was not observed in the $O_3$/UV process in the presence of $C_6H_6$ where the concentrations of $NO_2{^-}$ and $NO_3{^-}$ were significantly reduced compared to in the process without $C_6H_6$. The pseudo-first order rate constants of all species were calculated with and without the presence of $C_6H_6$ to predict the variation of concentrations of all species during the $O_3$/UV process. It was suggested that $NO_2{^-}$ and $NO_3{^-}$ in the $O_3$/UV process can be more effectively removed from an aqueous system with an OH radical scavenger such as $C_6H_6$.

Effect of Gamma Ray Irradiation on the Pretreatment and Enzymatic Hydrolysis of Senna tora Stalk (감마선 조사 처리에 의한 결명자 줄기의 전처리와 효소가수분해 효과)

  • Kim, Jo Eun;Gong, Sung Ho;Jung, Jin Tae;Lee, Ok Ran;Lee, Jae Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.2
    • /
    • pp.127-133
    • /
    • 2018
  • Background: The demand of recycling renewable agricultural by-products is increasing. Radiation breeding is a method used to improve saccharification efficiency. Thus, we investigated the effect of gamma ray irradiation on the pretreatment and enzymatic hydrolysis of the stalks of Senna tora, an important medicinal plants. Methods and Results: S. tora seeds were irradiated with gamma ray at doses of 100, 200, 300, and 400 Gy. In the pretreated biomass, glucan and lignin content were higher in the M1 ($1^{st}$ generations of irradiation) S. tora stalks than in the M2 ($2^{nd}$ generations of irradiation) stalks, this can be explained by the higher degradation rate in M1. After oxalic acid pretreatment, the concentration of total phenolic compounds (TPCs) in the hydrolysate increased in the gamma ray treated seeds. The highest relative increase rate in crystallinity in the pretreated biomass was observed in M1-400 Gy and M2-100 Gy. The cellulose conversion rate was higher in M1 than in M2, except for 200 Gy. Conclusions: Gamma ray irradiation at an appropriate dose can be used to improve the efficiency of pretreatment and enzymatic hydrolysis, thereby increasing biomass availability.

How Sensitive is the Earth Climate to a Runaway Carbon Dioxide? (기후는 이산화탄소 증가에 얼마나 민감한가?)

  • Choi, Yong-Sang
    • Journal of the Korean earth science society
    • /
    • v.32 no.2
    • /
    • pp.239-247
    • /
    • 2011
  • The United Nations Framework Convention on Climate Change and the corresponding national low-carbon policy should be grounded on the scientific understanding of climate sensitivity to the increase in CO2 concentration. This is, however, precluded by the fact that current estimates of the climate sensitivity highly vary. To understand the scientific background, limitations, and prospects of the climate sensitivity study, this paper reviews, as objectively as possible, the most recent results on the sensitivity issue. Theoretically, the climate sensitivity hinges on climate feedbacks from various atmospheric and surface physical processes. Especially cloud and sea-ice processes associated with shortwave radiation are known to have largest uncertainty, resulting in an inaccurate estimation of climate sensitivity. For this reason, recent observational studies using satellite data suggest sensitivity lower than or similar to those estimated by climate models (2-5 K per doubled CO2).

Optimal Conditions of Single Cell Gel Electrophoresis (Comet) Assay to detect DNA single strand breaks in Mouse Lymphoma L5178Y cells

  • Ryu, Jae-Chun;Kwon, Oh-Seung;Kim, Hyung-Tae
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • Recently, single cell gel electrophoresis, also known as comet assay, is widely used for the detection and measurement of DNA strand breaks in vitro and in vivo in many toxicological fields such as radiation exposure, human monitoring and toxicity evaluation. As well defined, comet assay is a sensitive, rapid and visual method for the detection of DNA strand breaks in individual cells. Briefly, a small number of damaged cells suspended in a thin agarose gel on a microscope slide were lysed, unwinded, electrophoresed, and stained with a fluorescent DNA binding dye. The electric current pulled the charged DNA from the nucleus such that relaxed and broken DNA fragments migrated further. The resulting images which were subsequently named for their appearance as comets, were measured to determine the extent of DNA damages. However, some variations could be occurred in procedures, laboratories's conditions and kind of cells used. Hence, to overcome and to harmonize these matters in comet assay, International Workshop on Genotoxicity Test Procedure (IWGTP) was held with several topics including comet assay at Washington D.C. on March, 1999. In spite of some consensus in procedures and conditions in IWGTP, there are some problems still remained to be solved. In this respect, we attempted to set the practical optimal conditions in the experimental procedures such as lysis, unwinding, electrophoresis and neutralization conditions and so on. First of all, we determined optimal lysis and unwinding time by using 150 $\mu$M methyl methanesulfonate (MMS) which is usually used concentration. And then, we determined optimal positive control concentrations of benzo(a)pyrene (BaP) and MMS in the presence and absence of S9 metabolic activation system, respectively.

  • PDF

Characteristics of NOB Formation in a Coaxial Multi-Air Staged LPG Flame (동축 공기다단 LPG화염의 NOx 생성특성에 관한 연구)

  • Kim, Han-Seok;Ahn, Kook-Young;Kim, Ho-Keun;Yu, Myung-Jong;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.215-226
    • /
    • 2003
  • Experimental and numerical studies have been done to examine the effects of excess air ratio and tertiary air swirl number on the formation characteristics of NOx in a pilot scale combustor adopting a multi-air staged burner. In numerical calculation the mathematical models for turbulence, radiation and nitric oxide chemistry were taken into account. The radiative transfer equation was solved using the discrete ordinates method with the weighted sum of gray gases model. In the NOx chemistry model, the chemical reaction rates for thermal and prompt NOx were statistically averaged using a probability density function. The results were validated by comparison with measurements. For the experiment, a 0.2 MW pilot multi-staged air burner has been designed and fabricated. Using the numerical simulation developed here, a variation of thermal and prompt NOx formation was predicted by changing the excess air ratio and tertiary air swirl number. As the excess air ratio increased up to 1.9, the formation of the total as well as thermal NOx at exit increased while the prompt NOx decreased. The formation of thermal NOx was more affected by concentration of $O_2$ and $N_2$ than gas temperature. When the tertiary air swirl number increased, the formation of the total as well as the prompt NOx slightly decreased.

Antioxidant Effect of Green Tea Extracts on Enzymatic Activities of Hairless Mice Skin Induced by Ultraviolet B Light (녹차추출물에 의한 쥐표피의 효소에 대한 항산화 효과)

  • Ryu, Beung-Ho;Park, Chun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.355-361
    • /
    • 1997
  • This study was carried out to investigate the acute cutaneous enzymatic antioxidant activity of green tea extracts (GTE) on hairless mice skin after a signal exposure to ultraviolet B radiation. GTE has been in corporated at concentration of 5, 25, 50 and $100\;{\mu}g$ into hairless mice skin. Under exposure conditions of $1.0\;joule/cm^{2}$, impairment of cutaneous enzymatic activity was observed. Catalase and glutathione reductase were significantly influenced in dose-dependent manner by GTE, however glutathione peroxidase and superoxide dismutase were not affected. To measure inhibition effect of the GTE on lipoxygenase. $50\;{\mu}g$ GTE extract was added in vitro to arachidonis acid. GTE showed higher inhibition effect on 5-hydroxyeicosatetraenoic acid (HETE) and 8-HETE than metalolic products of 12- or 15-HETE. The addition of 5, 25, 50 and $100\;{\mu}g$ GTE inhibited the metabolite formation of 5-HETE by 32, 52, 62 and 80%, respectively, and the metabolite formation of 8-HETE by 36, 47, 70 and 84%, respectively.

  • PDF

A Study on the Control of the Exhaust CO from Gas Boiler (가스보일러 일산화탄소 제어에 관한 연구)

  • Jo Young-Do;Choi Kyoung-Suhk;Kim Ji-Yoon;Kim Chang-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • In this work, the chemical composition of the exhaust gas from domestic gas boiler has been analysed in the point of thermodynamics and CO sensor has been characterized. We proposed that the combustion condition can be estimated by the exhaust gas composition, i.e., the excess air ratio and combustion temperature can be calculated simply by the measurement of the $O_{2}$ fraction and $H_{2}/CO$ in the exhaust gas. By analyse the on site situation domestic boiler, the excess air ratio is about $55\~110\%$. Therefore, the CO may be produced in domestic gas boiler by luminous(yellow) flames rapidly lose heat by radiation, turbulent flames may be partially quenched by the action of steep velocity gradients, and flames burning very close to a cold wall may be partial1y quenched by heat conductivity to the wall. The output voltage of CO sensor is lineally depend on the CO and $H_{2}$concentration. And the exhaust CO from boiler can be reduced by closed loop control with CO sensor

  • PDF